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INTRODUCTION

The term ”multi-scale” is presently very much
en vogue, one almost gets the impression that this
term very often is simply used to emphasize the
”importance” of a particular scheme or to impress
an audience with a ”buzz word”. In the applied
mathematics literature [1] it seems that essentially
two types of multi-scale schemes are in discussion,
namely ”one shot” schemes in which one approach
is combined in a consecutive manner with another
one of different mathematical origin, and procedures
by intertwining two such approaches ”iteratively”,
or, to use a term more common in physics and
chemistry, ”selfconsistently”.

Clearly enough the easiest way to define multi-
scale procedures in particular in the realm of physics
and chemistry would be to state that a combination
of say two different kinds of differential equations is
required. Although this in principle would be a valid
definition it is too narrow, since, e.g., any use of
density functional theory (DFT) requires already the
application of two differential equations of different
kind, namely the Kohn-Sham equations (effective
Schrödinger or Dirac equation) and the Poisson
equation, in an ”iterative” manner. Surely enough
nobody would call ab-initio type calculations in
terms of the DFT a ”multi-scale” procedure. This
simple counter-example indicates that it is perhaps
quite appropriate to discuss the concept of ”multi-
scale” only in the context of a particular field of
research or discipline. In the present paper such a
discussion is devoted to computational physics, in
particular to computational materials science, since
this is a well-established field of research in which
many different types of computer simulations are
performed.

FORMAL DISTINCTIONS

Suppose multi-scale schemes refer to a com-
bination of different levels in physics such as,
e.g., by combining quantum mechanical approaches
with phenomenological ones, or, phrased differently,
by combining microscopical with macroscopical
schemes. A ”one shot” multi-scale procedure would
then consist of a quantum mechanical calculation
(e.g., within the framework of the DFT) followed
by a phenomenological one, in which the results
of the former are used; an ”iterative” procedure
combines both in a kind of selfconsistent manner
[2 – 7]. In the latter case of course great care has to
be taken that fundamental concepts are not violated
(microcosmos versus macrocosmos), i.e., that only
quantities can be varied that are well-defined on
both ”conceptual” levels.

Two typical situations will be discussed, namely
augmenting a time-independent quantum mechan-
ical scheme with (1) the concept of time (e.g.,
in terms of the phenomenological Landau-Lifshitz-
Gilbert equation), and (2) with a method typical for
statistical mechanics (e.g., Monte Carlo simulations
based on ab-initio determined parameters), both
schemes in fact can be operated in an iterative
manner. Most frequently in computational materials
science ”one-shot” multi-scale procedures are used,
in which typically physical properties of materials
are calculated in terms of the results of ab-initio
approaches. In order to be classified as a multi-
scale approach the evaluation of these properties
has to be based on a scheme, which by defini-
tion is different from a typical DFT method such
as, e.g., the Kubo equation for evaluating electric
and (magneto-) optical transport, i.e., by requiring
“physically separate” computer program packages
that in the end provide macroscopic quantities. Very



often also multiple combinations of ”one shot”
multi-scale procedures are used as for example in
evaluating magnetic domain wall properties [8 –
10], the switching times (pico-second regime) in
current induced switching [11 – 13], or, rotation and
ellipticity angles in the magneto-optical Kerr-effect
[14 – 16].
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