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INTRODUCTION

The electron device community is actively in-
vestigating transistors realized in Ultra-Thin (UT)
semiconductor films. The Effective Mass Approxi-
mation (EMA) is very frequently used to describe
the nano-MOSFETs [1], however a comparison
with more rigorous bandstructure calculations is
highly demanded [2]. In this paper we use the
method of the Linear Combination of Bulk Bands
(LCBB) to calculate the band structure in UT silicon
and germanium nano-transistors and compare the
eigenvalues, energy dispersion and density of states
(DOS) with the simplified EMA results

LCBB AND EMA QUANTIZATION MODELS

In the LCBB quantization model the unknown
wavefunction is expanded in terms of the Bloch
functions Φnkkz

of the underlying crystal [3], [4],
where n is the band of the Bloch function, k denotes
the in-plane wavevector, and z is the quantization
direction. By selecting an appropriate set of kz

values it is possible to obtain a separated eigenvalue
problem for each in-plane k [4], the resulting energy
dispersion for Si111 is illustrated Fig.1.

In the EMA approach, a single Schrödinger-like
equation in the real space is solved for each valley
[5]. The set of EMA parameters used in this work
are reported in Tab.I and are derived from [6].

RESULTS AND DISCUSSION

The confining potential used for both EMA and
LCBB calculations is a squared well with a width
of TSCT and a barrier of ΦB=3eV , hence the
penetration of the wavefunction in the oxide is
accounted for. Fig.2 reports the lowest eigenvalue
versus TSCT for the D0.916 and the D0.19 valleys
ofSi(100). The EMA tracks the LCBB results very
well. With an infinite barrier, instead, the EMA

eigenvalues increase well above the LCBB values
at the smallest TSCT . Fig.3 reports the same com-
parison as in Fig.2 for the L0.219, the D0.33 and the
Γ valleys in Ge(110). Even in this case the EMA
reproduces the absolute and relative position of the
valleys indicated by the LCBB model.

Fig.4 reports the energy dispersion for Si(111)
along the dashed line indicated in Fig.1. Ac-
cording to the position of the minima in the
3D Brillouin Zone (BZ), the EMA predicts a
minimum at kx=1.7/

√
6(2π/a0)�0.6940(2π/a0).

The LCBB results do exhibit such a minimum
for relatively large TSCT values (not shown).
However, Fig.4 shows that for TSCT =2nm the
minimum of the LCBB bandstructure tends to
move at the edge of the 2D BZ (i.e. at
kx=2.0/

√
6(2π/a0)�0.8165(2π/a0)) thus creating

a discrepancy between the EMA and LCBB results.
The LCBB energy dispersion has a flat energy
branch, whose effective mass is much larger than the
mle=0.674 value reported in Tab.I. This feature of
the LCBB calculations result in a large DOS at the
very bottom of the conduction subbands (see Fig.5),
that decreases with the increase of the energy.

As illustrated in Fig.4, we found that the LCBB
and EMA 2D energy dispersion can be quite differ-
ent at the smallest TSCT . Thus, the LCBB method
has been used to calculate TSCT dependent trans-
port masses, that will be discussed at the conference.
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Fig. 1. Si(111), TSCT =5nm. Lowest eigenvalue vs. k

obtained with the LCBB method. The six degenerate minima
are in k=(±1.7/

√
6, 0) and in k=(±0.85/

√
6,±0.85/

√
2).

The hexagon indicates the 2D Brillouin zone [4].
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Fig. 2. Si(100). Lowest eigenvalue versus TSCT for the D0.916

and D0.19 valleys calculated with either the LCBB or the EMA
model. The infinite ΦB EMA results are obtained by setting the
wavefunction to zero at the oxide interface.
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Fig. 3. Ge(110). Lowest eigenvalue versus TSCT for the
L0.219, D0.33 and Γ0.049 valleys calculated with either the
LCBB or the EMA model. The energy offset of the D and
Γ valleys with respect to the L valleys of bulk germanium is
assumed to be 189meV and 145meV , respectively.
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Fig. 4. Si(111), TSCT =2nm. Energy dispersion along the
dashed line indicated in Fig.1 obtained with either the LCBB
or the EMA model. The minimum is at kx=1.7/

√
6(2π/a0)

according to the EMA model. The minimum in the LCBB
model has both a different position and a different value.
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Fig. 5. Si(111), TSCT =2nm. Density of states calculated
with either the LCBB or the EMA model. A spike of DOS is
observed in the LCBB results, which is produced by the flat
energy branch in Fig.4. In the EMA model a non-parabolicity
factor α=0.5eV −1 is used.

Material mte mle mz nν Label

Si(100) 0.190 0.190 0.916 2 D0.916

0.19 0.916 0.190 4 D0.19

Si(111) 0.190 0.674 0.258 6 D0.258

Ge(110) 0.080 0.600 0.219 2 L0.219

0.2 0.575 0.33 4 D0.33

0.049 0.049 0.049 1 Γ0.049

TABLE I

DEGENERACY nν , QUANTIZATION MASS mz AND

EFFECTIVE MASSES mle AND mte ALONG THE PRINCIPAL

AXES OF THE ELLIPSES THAT DESCRIBE THE IN-PLANE

ENERGY DISPERSION IN THE EMA MODEL. THE

PARAMETERS CORRESPOND TO THE DOMINANT VALLEYS

FOR SI(100), SI(111) AND GE(110) AND ARE CALCULATED

AS EXPLAINED IN [6].




