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INTRODUCTION

We introduce a generalized time-dependent
statistical operator to calculate nonequilibrium
statistical averages of inhomogeneous current-
carrying dissipative nanoscale conductors. We
show that the method of the nonequilibrium
statistical operator (NSO) [1] and the boosted
statistical operator [2], [3] yield the same result
for an appropriate choice of the thermodynamic
parameters responsible for time-reversal breaking
in homogeneous systems.

Next we demonstrate the method of the generalized
statistical operator that also leads to a quantized
conductance GLB = 2e2/h [6], [7] for a single-
channel quantum point contact (QPC) and we infer
that energy dissipation must be included to obtain
a finite conductance.
Moreover a connection is made between our
approach and the method of M.P. Das and F.
Green [4] who have obtained the Landauer-Büttiker
conductance without making the ”Landauer
assumptions”.

THE GENERALIZED NON-EQUILIBRIUM

STATISTICAL OPERATOR

Within the framework of the NSO method of
Zubarev our generalized non-equilibrium statistical
operator corresponds the following form of the
quasi-equilibrium statistical operator :

ρ̂B

t =
1

Z(t)
e−βe(t)(Ĥ

B
e −μ(t)N̂ )e−β(t)Ĥp (1)

with

ĤB

e
= Ĥe + τ(t)

∫

Ω

dr Ĵ ·E (2)

where Ĥe and Ĵ denote the Hamiltonian and current
density operator of the unperturbed electron system
and ĤP refers to the free phonon bath. Eq. (1) repre-
sents a current-carrying quasi-equilibrium statistical
operator due to the presence of the time-reversal
breaking term :

ĤB(t) = τ(t)

∫

Ω

dr Ĵ · E. (3)

It is possible to show that the generalized statistical
operator can also be derived from the principle
of maximum entropy under the constraint that it
yields the correct total current 〈Î〉. In the steady-
state regime where the quasi-equilibrium statisti-
cal operator becomes time-independent the integral
containing the dot product of Ĵ and E can be disen-
tangled [5] and we obtain ĤB = τ ÎVε where Vε is
the applied electromotive force. The time-reversal
breaking term ĤB(t) is a measure of the average
energy increase of the electron ensemble at time t
due to the power supplied by the nonconservative
electric field E.

SELF-CONSISTENT SOLUTION OF POISSON AND

BALANCE EQUATIONS IN THE STEADY-STATE

In the steady-state the parameters βe, μ and τ are
obtained from a set of balance equations for energy
and momentum [2] which are given by :

IVε =
i

h̄
〈[Ĥe, Ĥep]〉 (4)

∫

dτ ρeE =
i

h̄
〈[P̂, Ĥep]〉 +

i

h̄
〈[Ĥe, Ĥimp]〉. (5)

Eqs. (4)-(5) are solved self-consistently together
with Poisson’s equation :

∇2
Φ =

e

ε
[n(r) − n0] . (6)
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Due to the presence of the electron-phonon inter-
action Hamiltonian Ĥep in the balance equations
(4)-(5) energy dissipation is explicitly included.

QUANTIZED CONDUCTANCE BEYOND THE

RESERVOIR PICTURE

For the case of the QPC we show that the Poisson
equation together with the requirement of charge
neutrality in the asymptotic regions of the QPC
yields τ = L/2vF where L is the operational
length of the QPC, while vF is the Fermi-velocity.
Calculating the current I with this value for τ , we
obtain for a one-channel QPC at low temperature
in the linear-response regime :

I = −2e
∑

k

F (εk + τVεIk)Ik ≈
2e2

h
Vε (7)

where

Ik = −
eh̄k

mL
(8)

is the one-particle current.
As a result we have obtained the Landauer-Büttiker
quantized conductance through a self-consistent cal-
culation without referring to the reservoir picture.
For the particular case of the QPC this value of the
corresponding total relaxation time τ = L/2vF was
also obtained by Das and Green [4] from the Kubo-
Greenwood formula for the conductance. In their
case the requirement that τin = τel = L/vF was
necessary to obtain the quantized conductance. The
total relaxation time τ was then obtained through
Matthiessen’s rule :

τ−1
= τ−1

in
+ τ−1

el
=

2vF

L
. (9)

The corresponding total scattering length
λ = vFτ = L/2 is thus half the length L of
the QPC and is due to both inelastic (phonons) and
elastic scattering.

Finally, we also mention the result obtained
by Kamenev and Kohn [8] who have also obtained
the Landauer-Büttiker conductance without using
the reservoir picture. Their calculation is based
upon a self-consistent solution of the Schrödinger,
Poisson and continuity equations.

CONCLUSION

The use of a generalized NSO allows us to
obtain a self-consistent solution of the energy and
momentum balance equations and Poisson equa-
tion. The self-consistent solution involves the La-
grange multipliers τ(t), μ(t) and Te(t) which are
in general time-dependent. Applying the general-
ized NSO method to a one-channel QPC in the
low-temperature linear-response regime yields the
Landauer-Büttiker conductance GLB. The corre-
sponding value of the Lagrange multiplier τ is given
by L/2vF and is in agreement with the results
obtained by [4]. Moreover we have corroborated
the result of Green and Das, stating that inelastic
scattering is essential for the Landauer-Büttiker
conductance.

REFERENCES

[1] D. N. Zubarev , Nonequilibrium Statistical Thermodynam-
ics,Consultant bureau N.Y., 1974

[2] Bart Sorée, Wim Magnus, Wim Schoenmaker, Energy
and momentum balance equations : a novel approach to
quantum transport in closed circuits, Phys.Rev.B66 (2002)
035318

[3] Bart Sorée, Wim Magnus, Wim Schoenmaker, Conduc-
tance quantization and dissipation, Phys.Lett.A310 (2003)
322-328

[4] M.P. Das and F. Green, Landauer formula without Lan-
dauer’s assumptions, J.Phys. : Condens. Matter 12 (2003)
L687-693

[5] W. Magnus and W. Schoenmaker, On the Use of a New
Integral Theorem for the Quantum Mechanical Treatment
of Electric Circuits, J. Math. Phys.,39 (1998) 6715

[6] R. Landauer, IBM Journ. Res. Development 1 (1957) 223
and Philos. Mag. 21 (1970) 863
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