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I. INTRODUCTION

In recent papers, a theory has been proposed
that leads to a set of two Newton-like equations
describing the single-particle dynamics. The dy-
namical variables are the expectation value x of the
wave function ψ and its dispersion σ [1],[2]. The
equations inherently account for the Heinsenberg
position-momentum uncertainty relation. The theory
is part of an investigation that aims at consistently
incorporating quantum corrections into the trans-
port model, for applications to advanced solid-state
devices. The task is carried out in two steps. The
first one, which is of interest for the present paper,
derives two equations in which the dynamics of the
dispersion of the single-particle wave function is
accounted for in addition to that of the expectation
value of position. The model is founded on an
approximate description of the wave function that
eliminates the need of the Ehrenfest approximation.
As the dynamical variables of the model are the
position and dispersion of the particle, the resulting
equations are also termed “R-Σ equations” [3] to
remind the symbols by which such variables are
usually indicated in the literature.

The starting point of the method is the observation
that the particle’s localization is provided at every
time t by the squared modulus |ψ(ξ, t)|2. Non-
normalizeable wave functions are not considered.
Here, ξ ≡ (ξ1, ξ2, ξ3) denotes the coordinates, while
the symbol x ≡ (x1, x2, x3) is reserved for the
expectation value. As |ψ|2 can be reconstructed
from its moments [1], the knowledge of the time
evolution of the moments provides that of |ψ|2.
In turn, the moments’ dynamics is described by
Newton-like equations, that lend themselves to a
statistical extension. In this way, a set of trans-
port equations coherently incorporating quantum
features may be worked out [2].

II. THEORY
The position and dispersion are first- and second-
order moments of |ψ|2. It is of interest to extend the
model beyond the second order, to the purpose of
improving the understanding of its formal aspects
and extending its practical applicability. In this
paper, the model will be worked out to any order. As
the calculations are quite involved, the results will
be presented with reference to the one-dimensional
case only. Letting V (ξ, t) be the potential energy,
m the particle mass, P = −jh̄ d/dξ the momentum
operator, and

〈ξr〉 =

∫
|ψ|2ξr dξ (1)

the r-th moment of |ψ|2, r = 0, 1, . . ., the Newton
equation for 〈ξr〉 reads

m
d2〈ξr〉

dt2
= −r

∫
|ψ|2 ξr−1

dV
dξ
dξ+

+ar

∫
|Pψ|2 ξr−2 dξ − br 〈ξ

r−4〉 , (2)

where the normalization condition
∫
|ψ|2 dξ = 1

is assumed, and ar = r(r − 1)/m, br = h̄2r(r −
1)(r−2)(r−3)/(4m). Equation (2) is found starting
from the espression of the time derivative of the
expectation value of a time-independent operator A,

d
dt
〈A〉 =

j

h̄

∫
ψ∗

(HA−AH) ψ dξ , (3)

with H = P2/(2m) + V the Hamiltonian operator,
and by systematically applying suitable commuta-
tion rules involving quantum operators. Unfortu-
nately, the possible commutation rules of Quantum
Mechanics are many, whereas those useful for the
purpose at hand are fewer. They are

ξr P − P ξr
= r jh̄ ξr−1 , (4)

PGr − GrP = −rjhGr−1 . (5)

with −jh̄Gr = m (Hξr − ξrH).



III. DISCUSSION

A remarkable feature of (2) is that the second
term at the right hand side does not contribute unless
r ≥ 2, and the third term does not contribute unless
r ≥ 4. Note that the dimensions of (2) are energy×
lengthr−2. As expected, the case r = 1 provides the
standard relation

m
d2〈ξ〉
dt2

= −

∫
|ψ|2
dV
dξ
dξ (6)

which, after parametrizing |ψ|2 as δ(ξ−x) with x =

〈ξ〉, yields the Ehrenfest approximation. Note that
such a parametrization is equivalent to expanding
dV/dξ into a Taylor series around ξ = x and
truncating the series to order zero. Instead, the
expansion of dV/dξ to the second order (still with
r = 1) yields, after letting σ = 〈ξ2〉 − x2,

m
d2x
dt2

= −
dV
dξ

−
σ

2

d3V
dξ3

, (7)

namely, the first of the R-Σ equations [1].

For the case r = 2 it is useful to remind that
mẋ = 〈P〉 and 〈P2〉 = (Δp)2 + m2ẋ2, with
(Δp)2 the momentum dispersion. In the second-
order approximation of the R-Σ model, such a
dispersion is replaced with h̄2/(4σ) by assuming
that ψ is a minimum-uncertainty wave function.
Such an assumption may be viewed as the closure
condition for the system of Newton equations built
up by the first and second moment. Expanding
ξ dV/dξ to the second order around x yields, after
some manipulation,

m
d2σ
dt2

=
h̄2

2mσ
− 2σ

d2V
dξ2

, (8)

namely, the second of the R-Σ equations. About Eq.
(8) it is worth adding that the factor 2 multiplying
σ d2V/dx2 was missing in the corresponding equa-
tions of Refs. [1], [2], and [3]. However, none of
the conclusions of such papers is affected, with the
exception of the calculation of the frequency of σ in
the harmonic-oscillator type of motion, which must
be corrected by a factor

√
2.

It may be argued that using the moments of |ψ|2

may eventually lead to canceling the information
carried by the phase of the wave function. Actually

this is not true. In fact, using the polar form ψ =

α exp(jβ), α > 0, one finds

gr
.
= m

d〈ξr〉

dt
= r 〈ξr−1h̄β′〉 , (9)

where the prime indicates the derivative with respect
to ξ. In particular, the case r = 1 of (9) is equivalent
to mẋ = 〈P〉. As a consequence, the phase β also
enters the second term at the right hand side of (2).
Another remark is that the external force −dV/dξ
enters only the first term at the right hand side of
(2), while the other two terms are determined by
the form of the wave function alone. If the force
is absent, the evolution of the wave function is
determined by the initial condition only. It follows
that in this case the dynamics of the moments is
determined solely by the initial conditions, as it
should be. No matter what the force is, the initial
conditions are determined by calculating (1) and (9)
at t = 0. As |ψ|2 = α2, one notices that the initial
condition for the moment is determined by the wave
function’s modulus, whereas that for the moment’s
velocity is determined by the phase.
To bring the model beyond the second order it is
necessary to add, say, the equation for r = 3 and
expand ξr−1 dV/dξ in (2) to the extent of making
the third-order moment 〈ξ3〉 to appear. The same
scheme applies to the higher moments. Evidently,
for r > 2 the closure condition (Δp)2 = h̄2/(4σ)

of the second-order case becomes less sensible,
because the modulus of the minimum-uncertainty
wave function is Gaussian, which makes the odd
moments of order r ≥ 3 to vanish due to symmetry.
It follows that the closure condition must incorpo-
rate the moments of order higher than the second.
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