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e-mail: macucci@mercurio.iet.unipi.it

INTRODUCTION

Carbon nanotubes are a very promising material
for nanoelectronic applications, due to their very
small size and to their peculiar physical properties.
A carbon nanotube can be described as a graphene
sheet rolled into a cylindrical shape. Its dispersion
relations can be found from those of 2D graphite
by enforcing a closure boundary condition.

METHODS

The graphene energy bands can be found ei-
ther using global methods (such as tight-binding),
which provide results over the whole � -space, or
local methods (such as ���	� ), which yield the
correct energy bands only near their extrema, but
with less computational effort. In particular, using
the tight-binding method [1] and considering only
the effect of the 
��� atomic orbitals (the most
relevant for transport) as well as only nearest-
neighbor interaction, we find the graphene energy
dispersion relations reported in Fig. 1. Alternatively,
if we insert the slowly varying electronic envelope
functions into the tight-binding equations, around
the extrema we obtain a ����� Hamiltonian matrix,
the eigenvalues of which give the ����� dispersion
relations of graphene [2]. Enforcing closure periodic
boundary condition for graphene corresponds to
considering cross-sections of the graphene energy
bands along parallel segments; if we replot the thus
found cross-sections in the nanotube Brillouin zone,
we obtain the nanotube dispersion relations (Fig. 2).
By differentiating the thus computed dispersion
relations, it is then possible to obtain the density
of states (DOS).

COMPARISON AND IMPROVEMENTS

In Figs. 3-6 we show the results obtained with the
two methods, in terms of energy bands and DOS,
for two nanotubes with different circumference. The����� method yields quite good results for the
bands obtained by cross-sectioning the graphene
dispersion relations near their extrema. In partic-
ular, for nanotubes with larger circumference, the
bands closer to the graphene extrema are better
reproduced, due to the smaller distance between
the parallel segments on which we take the cross
sections of the graphene energy bands. Analogously,
the DOS obtained with the ����� method is very close
to the one computed with the tight-binding approach
for small values of the energy, corresponding to
the energies for which the ����� method provides a
good approximation of the graphene energy bands.
In these calculations ����� is faster than tight-binding,
not only because of the reduced complexity of the
calculations, but also because in the ����� approach
(in which calculations are made relatively to the
graphene extrema points) we can eventually limit
ourselves to the determination of only the bands
closest to the graphene extrema (which are the most
interesting for transport analysis), while with tight-
binding this choice of bands can be much more
difficult. We propose an innovative procedure that,
adopting an unusual choice of unit vectors in the
reciprocal space, allows to easily select such bands
in the tight-binding method.
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Fig. 1. Energy dispersion relations of the graphene within its
Brillouin zone.
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Fig. 2. The energy dispersion relations of the nanotube can be
obtained from the ones of the graphene cross-sectioning them
in correspondence of parallel segments.
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Fig. 3. Dispersion relations of the nanotube (5,0) computed
with the tight-binding method (solid lines) and with the �����
method (dashed lines); ��� is the absolute value of the transfer
integral between nearest-neighbor atomic orbitals.
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Fig. 4. Density of states of the nanotube (5,0) computed with
the tight-binding method (solid lines) and with the ���	� method
(dashed lines).
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Fig. 5. Dispersion relations of the nanotube (10,0) (which has
a circumference twice that of the nanotube (5,0)), computed
with the tight-binding method (solid lines) and with the �����
method (dashed lines).
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Fig. 6. Density of states of the nanotube (10,0) computed
with the tight-binding method (solid lines) and with the �����
method (dashed lines).




