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INTRODUCTION

Semiconductor nanowires represent an attractive

material system since they can be now produced

with controlled material composition, physical

dimensions, and electronic properties. Furthermore

they can function at the same time as interconnects

and as devices: with an individual nanowire,

nanoscale field effect transistors (FETs) have

already been realized [1].

On a simulation perspective, semiconductor

nanowires are also very interesting because they

exhibit electronic properties that can not be found

in the usual MOSFET, like the 2D confinement

of the electrons (or holes) in the channel. This

implies that the widely spread effective-mass

approximation can no more be used for transport

calculation in devices with strong confinement,

where the bandstructure plays a crucial role. In

this work, therefore, an atomistic treatment of

silicon nanowires is proposed with not only perfect

contacts but also transitions from 1D (quantum

well) to 2D (quantum wire) confined structures.

RESULTS

To account for bandstructure effects in Si

nanowires, the sp3d5s∗ empirical tight-binding

method is applied. Its parameters are optimized

to reproduce the bulk bandstructure [2] and are

assumed unchanged for nanostructures. The wire

itself is constructed by translating the primitive

unit cell of the semiconductor crystal, composed of

two atoms. A small example with two additional

quantum well reservoirs is shown in Fig. 1: the two

different atoms of the primitive cell are plotted with

different colors. Others than (100) growth directions

can also be selected.

Any quantum transport problem requires appropri-

ate open boundary conditions. The usual technique

assumes semi-infinite reservoirs (Source and Drain)

that are the prolongation of the device. In the

present case this means a 2D electron confinement

for the reservoirs. However, realistic devices have

larger Source and Drain regions than the nanowire

channel, leading to a transition from a 1D confined

electron gas to a 2DEG one. This has a strong

influence on the characteristics of the device, such

as the transmission and the density of states, as

shown in Fig. 2 and 3 but also on the computational

effort.

The device is solved with an atomistic Green’s

function method whose boundary conditions are

represented via self-energies. Their calculation can

be accomplished via a recursive algorithm [3]. How-

ever 80% of the CPU time is still dedicated to that

process. To improve the numerical efficiency a new

algorithm was developed, based on the propagating

waves in the reservoirs. It is 15-20 times faster

than what is presented in Ref. [3] for this specific

problem. The well established algorithm is labeled

“Sancho-Rubio”, the new one “injection” in Fig. 3.

CONCLUSION

A more realistic treatment of Si nanowires is

presented where perfect contacts are replaced by

quantum wells. A new algorithm is used to solved

the resulting problem.

REFERENCES

[1] Y. Cui, Z. Zhong, D. Wang, W.U. Wang, and C. Lieber, ,
Nano Letters 3, 149 (2003).

[2] T.B. Boykin, G. Klimeck, and F. Oyafuso, , Phys. Rev. B
69, 115201 (2004).

[3] M.P. Lopez Sancho, J.M.. Lopez Sancho, and J. Rubio,
J. Phys. F: Met. Phys. 15, 851 (1985).



2D

1D

2D

x [nm] 

y [nm] 

z [nm] 

Fig. 1. Schematic view of a Si nanowire (1D electron gas) with quantum well Source and Drain (2D electron gas). Benchmark
example for the wire: x=22 nm, y=1.6 nm, z=1.6 nm. Source and Drain are assumed infinite in the x and y directions.
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Fig. 2. Spectral density of states for the wire from Fig. 1, (a) with perfect boundary conditions (BC) where Source and Drain are
the same as the Device, DOS is perfectly smooth in x and step-like in E, (b) with discontinuity in BC (2DEG-1DEG transition)
inducing evident interference effects in the inhomogeneous DOS.
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Fig. 3. (a) Transmission through the wire from Fig. 1 with quantum well (circled line + zoom) and perfect contacts (dashed line).
“Injection” labels the new algorithm, “Sancho-Rubio” the usual one. (b) Density of state at x=0 nm (Source) coming from left
(Source, solid line with circles) and right (Drain, solid line with squares) quantum well reservoirs.




