
Fast Inverse using Nested Dissection for the

Non Equilibrium Green’s Function

S. Li and E. Darve

Institute for Computational and Mathematical Engineering, Stanford University

496 Lomita Mall, Durand building, Room 265, Stanford, CA 94305-4040, U.S.A.

e-mail: darve@stanford.edu

INTRODUCTION

In recent years, nanoscale MOS transistors as

well as nanowires and molecular electronic devices

have been actively studied [1]. It is now possible

to manufacture transistors with channel lengths as

small as 10 nm and below. At these scales, quantum

effects such as tunneling are significant and have

to be included in the simulation model. Despite

the fact that transport issues for nano-transistors,

nanowires and molecular electronic devices are very

different from one another, they can be treated

with the common formalism provided by the Non

Equilibrium Green’s Function. This approach is

based on the coupled solution of the Schrödinger

and Poisson equations. Our algorithm focuses on the

computationally most expensive part which is the

solution of the Schrödinger equation for the electron

density, which is then used in the Poisson equation.

After certain key simplifications [4], the problem is

reduced to computing the diagonal elements of the

matrix G = [EI − H − Σ]
−1 (retarded Green’s

function) and G
<

= GΣ
<
G

† (less-than Green’s

function), where the energy level E, Hamiltonian

matrix H , and self energies Σ and Σ
< (see

Svizhenko [2] for those notations) are in this work

considered to be given. († denotes the transpose

conjugate of a matrix.) We now describe how to

compute the diagonal of G and G
< efficiently. Our

algorithm can be derived for devices of arbitrary

geometry and for arbitrary boundary conditions;

however for simplicity we will focus in this paper

on 2D rectangular devices (a typical geometry used

for modeling MOSFETs [2]).

DESCRIPTION OF THE ALGORITHM

Let’s first consider G (the extension to G
< is

presented below). The basic idea of our algorithm is

to perform many LU factorizations on the given ma-

trix to compute the diagonal elements of its inverse.

By taking advantage of the sparsity of the given

matrix, LU factorizations can be performed very

efficiently. Once the LU factorization is complete,

we can easily compute the last entry on the diagonal

of the inverse: for the n × n matrix G
−1

= LU ,

we have Gnn = 1/Unn. Although we can only

compute Gnn in this way, we can choose any node

and reorder G
−1 to make the node correspond to

the (n, n) entry of the reordered matrix and thus

compute all the diagonal elements of G.

If we have to perform a full LU factorization

for each of the n reordered matrices, the algorithm

will not be computationally efficient even though

each LU factorization is very fast. However, if

we reorder those matrices properly, many partial

factorizations for different reordered matrices turn

out to be identical. We can store the results of

those partial factorizations in a binary tree (its

structure follows the nested dissection procedure of

George [5]) and reuse them many times thereby

reducing considerably the computational cost. As a

result, the total cost of performing the LU factoriza-

tions on all the n reordered matrices is of the same

order as performing the LU factorization on one

matrix and thus computing all the diagonal elements

of G is very efficient. This is the main merit of our

algorithm.

For a square mesh of size N × N , the computa-

tional cost dominates at the top level of the binary

tree. The cost of performing partial factorization at

the top level is O(N3
) and we showed that the

total cost turns out to be also O(N3
). For rectangle

meshes of size Nx ×Ny with Nx < Ny, the cost is

O(N2
xNy).

We can also extend the above idea to computing

G
<. Define R

def
= L

−1
Σ

<
L

−†
= UG

<
U

†, then

we have G
<
nn = Rnn/|Unn|

2. In principle, R is a

dense matrix which is very expensive to calculate.

However, by taking advantage of the sparsity of

Σ
<, we created an algorithm to compute Rnn

whose cost is of the same order as computing

Unn. By using a re-ordering strategy and storage

of intermediate steps similar to the ones described

above, we derived an algorithm to calculate the

diagonal of G
< in O(N2

xNy) steps.

Unlike the computing cost that dominates at

the top level, the memory cost is about the same

(∝Nx Ny) at each level of the tree. We have

log(NxNy) levels and thus the total memory cost

is O(NxNy log(NxNy)). This is asymptotically

better than the algorithm given by Svizhenko et

al. [2] since the memory cost of their algorithm is

O(N2
xNy).

RESULTS

We made comparisons between our algorithms

and the algorithm given by Svizhenko [2] (see

Lake [3] for an earlier version in 1D). Their al-

gorithm is based on computing all the diagonal

blocks of G and G
< using a forward and backward

recurrence along the y axis of the device. The cost

of their algorithm is O(N3
xNy) since the inverse

of Ny matrices of size Nx needs to be computed.

Fig. 1 shows a comparison of running time between

the two algorithms. We can see that our algorithm

uses much less time when the mesh size exceeds

100 × 100 and scales much better overall. Fig. 2

shows the comparison of memory cost between the

two algorithms. We can see that the memory cost

of the two algorithms is about the same (because of

the larger constant factor in our algorithm) but the

memory cost of our algorithm increases slower than

the other algorithm so it is asymptotically better.

DISCUSSION

The constant factors in the running time and

the memory cost of our algorithm are expected to

improve by about 50%. This will be achieved by

exploiting more efficiently the sparsity of G
−1.

The algorithm described here can be extended to

arbitrary geometries. It is applicable to a large class

of devices including nanotubes and nanowires.

REFERENCES

[1] Y. Xue, S. Datta, and M. A. Ratner, “First-principles based

matrix Green’s function approach to molecular electronic

devices: general formalism,” Chemical Physics 281(2/3),

pp. 151-70, 2002

[2] A. Svizhenko, M. P. Anantram, T.R. Govindan, B. Biegel

and R. Venugopal, “Two-dimensional quantum mechanical

modeling of nanotransistors,” Journal of Applied Physics

91(4), pp. 2343-2354, 2002

[3] R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic,

“Single and multiband modeling of quantum electron trans-

port through layered semiconductor devices,” Journal of

Applied Physics 81(12), pp. 7845-69, 1997

[4] S. Datta, “Nanoscale device modeling: the Green’s function

method,” Superlattices and microstructures 28(4), pp. 253-

278, 2000

[5] A. George, “Nested dissection of a regular finite element

mesh,” SIAM Journal on Numerical Analysis 10(2), pp.

345-63, 1973

0 50 100 150 200
0

100

200

300

400

Running time of computing G and G
<

 for mesh of size N
x
× 100

N
x

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

) Algorithm by Svizhenko et al.
Our algorithm

Fig. 1. Running time of our algorithm and the algorithm

proposed by Svizhenko [2].

0 50 100 150 200
0

50

100

150

N
x

M
e
m

o
ry

 c
o
s
t
(M

B
)

Memory cost for mesh of size N
x
× 100

Algorithm by Svizhenko et al.
Our algorithm

Fig. 2. Memory cost of our algorithm and the algorithm

proposed by Svizhenko [2].

