Investigation of the Nonlinearity Properties of the DC I-V Characteristics of Metal- Insulator-Metal (MIM) Tunnel Diodes with Double-Layer Insulators

B. Hegyi, A. Csurgay, and W. Porod^{*}

Faculty of Information Technology, Péter Pázmány Catholic University, Budapest, Hungary *Center for Nano Science and Technology, University of Notre Dame, Notre Dame, IN, USA e-mail: Hegyi.Barnabas@itk.pkke.hu

INTRODUCTION

Metal-insulator-metal (MIM) diodes may play an important role in the future CMOS-compatible, high-speed infrared sensor applications. The different properties of the I-V curve are of great interest in these uses.

The DC I-V curve of single-insulator-layer MIM diodes is treated in several theoretical papers in the literature [1-2]. There exist also numerous experimental studies on the DC I-V curve of single-insulator-layer MIM diodes [2, 5-6].

Up to now, there have been neither numerical results nor experimental papers published on double-insulator-layer MIM diodes yet. The present paper reports and discusses simulation results on the DC I-V curve of MIM diodes with double insulator layer.

PROBLEM FORMULATION AND SIMULATION ALGORITHM

The assumed potential profile of the doubleinsulator-layer MIM diode without applied voltage is depicted in Fig. 1. The value of the current density for a given value of the external voltage is then determined using the algorithm described in [3]. This very simple quantum transport model is based on the scattering of the electron wave function by a spatially varying potential. The tunneling probability of the electrons is determined by solving a space-discretized single-electron Schrödinger equation. The so called Quantum Transmitting Boundary Method (QTBM) [4] is applied when solving the equation.

SIMULATION RESULTS AND DISCUSSION

The R_D resistance and the 2m quality factor of the diode are examined as a function of five diode

parameters. These quantities can be obtained from the different derivatives of the DC I-V curve.

The diode parameters are the total thickness of the insulator layers (*L*), the ratio of the thickness of the first insulator layer to the total thickness (r_d) , the ratio of the relative dielectric constants (r_{ε}) , the average work function (ϕ_0) and the asymmetry factor of the work functions (α).

The simulation results are shown in Fig. 2-6. In each of the diagrams, three of the five diode parameters are kept constant, while the other two are considered as independent variables.

ACKNOWLEDGEMENT

The support of the Hungarian National Research Fund (OTKA T-38345) is gratefully acknowledged. The work at the University of Notre Dame was supported by an ONR MURI grant.

REFERENCES

- J. G. Simmons, Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film, Journal of Applied Physics 34, 1793 (1963).
- [2] A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan, *The MOM Tunelling Diode: Theoretical Estimate of its Performance at Microwave and Infrared Frequencies*, Journal of Applied Physics 49, 5270 (1978).
- W.R. Frensley, *Heterostructures and Quantum Devices* (Academic Press, San Diego, 1994), Ch. 9 (Quantum Transport)
- [4] C. S. Lent, D. J. Kirkner, *The quantum transmitting boundary method*, Journal of Applied Physics 67, 6353 (1990).
- [5] I. Codreanu, F. J. Gonzalez, G. D. Boreman, *Detection mechanisms in microstrip dipole antenna-coupled infrared detectors*, Infrared Physics & Technology 44, 155 (2003).
- [6] C. Fumeaux, W. Herrmann, F.K. Kneubuhl, H. Rothuizen, Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation, Infrared Physics & Technology 39, 123 (1998).

Fig. 1. Potential profile of the double-insulator-layer MIM diode without applied voltage

Fig. 2. *m* as a function of the thickness ratio r_d and the total thickness *L*

Fig. 3. *m* as a function of the thickness ratio r_d and the dielectric constant ratio r_{ε}

Fig. 4. *m* as a function of the thickness ratio r_d and the α asymmetry factor of the work functions

Fig. 5 *m* as a function of the average work function ϕ_0 and the α asymmetry factor of the work functions

Fig. 6. R_D as a function of the average work function ϕ_0 and the α asymmetry factor of the work functions