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I. BACKGROUND

The simulation of nanoscale devices requires,

at least rudimentarily, the inclusion of quantum

effects. Quite a lot of attention has been paid to the

quantum mechanical modelling of free (collision-

less) transport. Efforts here include the direct solu-

tion of the Schrödinger equation [2], [11], macro-

scopic moment equations (quantum hydrodynamic

models) [9], [10], and extensions of semiclassical

Monte Carlo methods, either directly [13], [8] or via

effective potential approaches [6], [1], [12]. Compa-

rably little work has been done on the inclusion of

quantum effects into collision operators. Collisions

can be treated quite rigorously using Green’s func-

tions or by Wigner function methods for the phonon

system [7]. Using classical collision operators in

collusion with quantum corrected transport models

has the disadvantage that equilibrium solutions of

the resulting system do not correspond to admissible

quantum mechanical states, since the semiclassical

phonon collision operator increases the classical

entropy and not the correct quantum mechanical

entropy, given by S = Tr[ρ(ln ρ − 1)], where ρ
denotes the density matrix of the mixed state.

II. QUANTUM ENTROPY PRINCIPLES

In recent work [3], [4], [5] we have developed the

framework to extend semiclassical transport equa-

tions, like the Boltzmann equation, to a quantum

mechanical setting via the local maximization of

the quantum entropy. This results in a modification

of the semiclassical phonon collision operator. The

resulting operator dissipates the quantum entropy,

while maintaining the local conservation proper-

ties of the semiclassical collision operator. In the

Wigner picture, i.e. in terms of the Wigner function

fw(r,k), for a given potential V (r) it is of the form

Q[fw](r,k) = (1)

∫
K(r, V,k,k′

)φ(r,k′
) dk′ − κ(r,k, V )φ(r,k) ,

where φ(r,k) is the quantum mechanical entropy

variable, i.e. a generalization of the quasi- Fermi

function. The relation between the Wigner function

fw and the entropy variable φ is given by a nonlocal,
potential dependent, integral relation of the form

fw(r,k) =

∫
A(V, r,k, r′,k′

)φ(r′,k′
) dr′dk′ .

(2)

The quantum corrected collision operator acts like a

classical collision operator on the entropy variable

φ, but is nonlocal in space because of the nonlo-
cal relation (2) between fw and φ. The resulting
collision operator dissipates the quantum entropy

and drives the system to a quantum mechanically

correct equilibrium. It maintains the local conser-

vation properties, i.e. a collision event results in

the exchange of an amount h̄ω of energy with the
lattice. The operator Q in (1) is amenable to Monte
Carlo discretizations as well as series expansion

methods. We will present preliminary results for a

tunneling diode using a spherical harmonics expan-

sion method of the resulting Wigner - Boltzmann

equation. Figures 1-4 show the relation between

the Wigner function fw and the entropy variable φ,
which would classically be given by fw = e−Hφ,
for a potential barrier. Figure 1 shows the potential

and Figure 2 shows the Wigner function fw for a

constant entropy variable φ. Figures 3 and 4 show
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Fig. 1. Potential

the corresponding relations for an entropy variable

φ which is concentrated inside the potential barrier.
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Fig. 2. Wigner function fw for a constant entropy variable φ
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Fig. 3. φ concentrated inside the barrier
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Fig. 4. Wigner function fw corresponding to φ in Figure 3




