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I. INTRODUCTION

Unlike conventional MOSFETs, the gated
p-i-n diode [1] tunnel FETs [2]–[6] have
tunneling currents for both the subthreshold
as well as on-region of operation. The I − V
characteristics show a weak positive tempera-
ture coefficient over a wide temperature range
[7]. Thus, the subthreshold swing S, can be
scaled to below the kT/q diffusion limit of
conventional MOSFETs [8], [9]. In principle,
S can be vanishingly small within a small
range of gate bias VGS [10], [11]. However,
even with a 40mV/dec swing extremely low
on-currents were observed in tunneling car-
bon nanotube MOSFETs [12]. Using a band-
diagram approach we show that the subthresh-
old swing for tunnel FETs is not a constant
but is strongly dependent on the tunneling
barrier width, ω, and hence VGS .

II. BAND DIAGRAM APPROACH

Fig. 1, shows the simulated band-diagrams
for a tunnel FET (L =100 nm, tox =2 nm)
as a function of VGS for constant VDS . The
energy contours between source and drain
are depicted close to the Si-SiO2 interface.
To a first approximation we assume constant
tunneling barrier height (bandgap Wg) and
effective mass mo (it does not vary with ap-
plied bias). In this case the drain current IDS

depends exponentially on the barrier width,
ω. From the band-diagrams in the saturation
region [6] ω nearly independent of VDS [10].
We then can write:

IDS(ω) ∼ e−ω and 1/ω ∼ VGS (1)

Thus, taking a derivative of ω with respect to
ln(IDS) and VGS , we get

dln(IDS(ω)) ∼ −dω, and (2)

dω ∼ −ω2 · dVGS (3)

This implies that the smaller ω gets, the more
difficult it becomes to further lower it for a
constant dVGS . Thus, from (2) and (3)

S(ω) =
dVGS · ln10

dln(IDS)
∼

dVGS

−dω
∼

1

ω2
(4)

which is a strong non-linear function of ω,
and hence VGS . It is degrading with increas-
ing VGS , and hence limits Ion. This is con-
firmed by experimental results as shown in
Fig. 2, where we have plotted ‘spot’ swing as
function of VGS (data from [7]). Furthermore
(4) also implies that IDS is decaying faster
than exponentially and ideally, for ω → ∞,
S → 0, consistent with simulation predictions
[10]. Thus, in principle, with a proper choice
of device geometry parameters, for exam-
ple with pseudomorphically strained δp+SiGe
layer [8], [10], IDS can increase several or-
ders of magnitude within a small range of
VGS .

III. RESULTS AND DISCUSSION

We now look at the impact of channel
length L scaling on S. For a fully depleted
channel and heavily doped source and drain
regions, ωo at VGS = 0 V (assuming flat-
band and constant VDS) is limited by L.
As L is scaled, ωo is lowered. Thus, from
(4), S is expected to degrade with L scaling
into the ultra short channel length regime.
However, as Ion is determined by the channel
in inversion (ω <5 nm), L scaling is not
expected to affect Ion. This is confirmed by
both experimental (Fig. 3) as well as 2-D
device simulations (Fig. 4) where we show
the transfer characteristics as a function of L.
As L is scaled, S is clearly seen to degrade
at turn-off voltages while Ion remains almost
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Fig. 1. Simulated band-diagrams for a tunnel FET
close to the Si-SiO2 interface, as a function of VGS .
ω lowers with increasing VGS .
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Fig. 2. Experimental ‘spot’ S as a function of VGS

(p-channel). S is seen to degrade with increasing
VGS . Note that the high value of spot ‘S’ is due
to a thick oxide and doping smear-out effects.

independent of L scaling. Thus, while the
characteristics of the tunnel FETs is nearly
independent of channel length, L [13], [14],
even for sharp and abrupt tunnel junctions,
S starts to degrade with L scaling into the
ultra short-channel regime. This is confirmed
by both experimental as well as simulation
results.
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Fig. 3. Experimental p-channel transfer characteris-
tics for L =25nm and 70nm [7]. It should be noted
that the doping profi le also plays a critical role in
determining S.
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Fig. 4. Simulated n-channel transfer characteristics
as a function of L. At ultra short channel lengths, S
is seen to degrade with L scaling.
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