Channel Length Dependence of Tunnel FET Subthreshold Swing

Krishna K Bhuwalka, Mathias Born, Markus Schindler, and Ignaz Eisele Institut für Physik, Universität der Bundeswehr, Munich 85577 Neubiberg, Germany Tel: +49 89 6004 4043, Fax: +49 89 6004 3877, e-mail: Krishna.K.Bhuwalka@UniBw.de

I. INTRODUCTION

Unlike conventional MOSFETs, the gated p-i-n diode [1] tunnel FETs [2]–[6] have tunneling currents for both the subthreshold as well as on-region of operation. The I - Vcharacteristics show a weak positive temperature coefficient over a wide temperature range [7]. Thus, the subthreshold swing S, can be scaled to below the kT/q diffusion limit of conventional MOSFETs [8], [9]. In principle, S can be vanishingly small within a small range of gate bias V_{GS} [10], [11]. However, even with a 40mV/dec swing extremely low on-currents were observed in tunneling carbon nanotube MOSFETs [12]. Using a banddiagram approach we show that the subthreshold swing for tunnel FETs is not a constant but is strongly dependent on the tunneling barrier width, ω , and hence V_{GS} .

II. BAND DIAGRAM APPROACH

Fig. 1, shows the simulated band-diagrams for a tunnel FET (L = 100 nm, $t_{ox} = 2 \text{ nm}$) as a function of V_{GS} for constant V_{DS} . The energy contours between source and drain are depicted close to the Si-SiO₂ interface. To a first approximation we assume constant tunneling barrier height (bandgap W_g) and effective mass m_o (it does not vary with applied bias). In this case the drain current I_{DS} depends exponentially on the barrier width, ω . From the band-diagrams in the saturation region [6] ω nearly independent of V_{DS} [10]. We then can write:

$$I_{DS}(\omega) \sim e^{-\omega}$$
 and $1/\omega \sim V_{GS}$ (1)

Thus, taking a derivative of ω with respect to $\ln(I_{DS})$ and V_{GS} , we get

$$d\ln(I_{DS}(\omega)) \sim -d\omega$$
, and (2)

$$d\omega \sim -\omega^2 \cdot dV_{GS} \tag{3}$$

This implies that the *smaller* ω gets, the more difficult it becomes to *further* lower it for a *constant* dV_{GS} . Thus, from (2) and (3)

$$S(\omega) = \frac{dV_{GS} \cdot \ln 10}{d\ln(I_{DS})} \sim \frac{dV_{GS}}{-d\omega} \sim \frac{1}{\omega^2}$$
 (4)

which is a strong non-linear function of ω , and hence V_{GS} . It is degrading with increasing V_{GS} , and hence limits I_{on} . This is confirmed by experimental results as shown in Fig. 2, where we have plotted 'spot' swing as function of V_{GS} (data from [7]). Furthermore (4) also implies that I_{DS} is decaying *faster* than exponentially and ideally, for $\omega \to \infty$, $S \to 0$, consistent with simulation predictions [10]. Thus, in principle, with a proper choice of device geometry parameters, for example with pseudomorphically strained δp^+ SiGe layer [8], [10], I_{DS} can increase *several orders of magnitude* within a small range of V_{GS} .

III. RESULTS AND DISCUSSION

We now look at the impact of channel length L scaling on S. For a fully depleted channel and heavily doped source and drain regions, ω_o at $V_{GS} = 0$ V (assuming flatband and constant V_{DS}) is limited by L. As L is scaled, ω_o is lowered. Thus, from (4), S is expected to *degrade* with L scaling into the ultra short channel length regime. However, as I_{on} is determined by the channel in inversion (ω <5 nm), L scaling is not expected to affect I_{on} . This is confirmed by both experimental (Fig. 3) as well as 2-D device simulations (Fig. 4) where we show the transfer characteristics as a function of L. As L is scaled, S is clearly seen to degrade at turn-off voltages while Ion remains almost

Fig. 1. Simulated band-diagrams for a tunnel FET close to the Si-SiO₂ interface, as a function of V_{GS} . ω lowers with increasing V_{GS} .

Fig. 2. Experimental 'spot' S as a function of V_{GS} (p-channel). S is seen to degrade with increasing V_{GS} . Note that the high value of spot 'S' is due to a thick oxide and doping smear-out effects.

independent of L scaling. Thus, while the characteristics of the tunnel FETs is nearly independent of channel length, L [13], [14], even for sharp and abrupt tunnel junctions, S starts to degrade with L scaling into the ultra short-channel regime. This is confirmed by both experimental as well as simulation results.

REFERENCES

- J. J. Quinn, G. Kawamoto, and B. D. McCombe, Surface Science, vol. 73, pp. 190-196, May 1978.
- [2] T. Baba, Jpn. J. Appl. Phys., vol. 31, pp. L455-L457, 1992.
- [3] W. M. Reddick, G. A. J. Amaratunga, *Appl. Phys. Lett.*, vol. 67, no. 4, pp. 494-497, 1995.
- [4] J. Koga and A. Toriumi, *Electron Device Letters*, vol. 20, no. 10, pp. 529-531, 1999.
- [5] W. Hansch, C. Fink, J. Schulze, and I. Eisele, *Thin Solid Films*, vol. 369, pp. 387-389, 2000.

Fig. 3. Experimental p-channel transfer characteristics for L = 25nm and 70nm [7]. It should be noted that the doping profile also plays a critical role in determining S.

Fig. 4. Simulated n-channel transfer characteristics as a function of L. At ultra short channel lengths, S is seen to degrade with L scaling.

- [6] K. K. Bhuwalka, S. Sedlmaier, A. Ludsteck, C. Tolksdorf, J. Schulze, and I. Eisele, *IEEE Trans. Electron Devices*, vol. 51, no. 2, pp. 279-282, 2004.
- [7] K. K. Bhuwalka, M. Born, M. Schindler, M. Schmidt, T. Sulima, and I. Eisele *Int. Conf. Solid State Devices and Materials*, Kobe, Japan, 2005, pp. 288-289.
- [8] K. K. Bhuwalka, J. Schulze, and I. Eisele, Jpn. J. Appl. Phys., vol. 43, no. 7A, pp. 4073-4078, 2004.
- [9] J. Appenzeller, Y.-M Lin, J. Knoch, Z. Chen, and Ph. Avouris, to be published, *IEEE Trans. Electron Devices*, vol. 52, no. 12, 2005.
- [10] K. K. Bhuwalka, J. Schulze, and I. Eisele, *IEEE Trans. Electron Devices*, vol. 52, no. 7, pp. 1541-1547, 2005.
- [11] Q. Zhang, W. Zhao, and A. Seabaugh, 63rd Device Research Conf. Dig., Santa Barbara, CA, pp. 161-162, June 2005.
- [12] J. Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris, *Phys. Rev. Letts*, vol. 93, pp. 196805, 2004.
- [13] C. Aydin, A. Zaslavsky, S. Luryi, S. Cristoloveanu, D. Mariolle, D. Fraboulet, and S. Deleonibus, *Appl. Phys. Letters*, vol. 84, pp. 1780-1782, 2004.
- [14] K. K. Bhuwalka, J. Schulze, and I. Eisele, *IEEE Trans. Electron Devices*, vol. 52, no. 5, pp. 909-917, 2005.