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INTRODUCTION

As the channel of semiconductor devices ap-
proaches the 10 nm length-scale, quantum effects
like confinement, tunneling and interference effects
must be taken into account when simulating such
small devices. Fully quantum models provide an ac-
curate description in these cases, but at the expense
of high computational effort [1]. An alternative ap-
proach is to treat only certain regions in the device
in a quantum mechanical manner, while the rest is
dealt with by classical models [2]. The advantages
of these hybrid methods are low computational
effort in zones where less sophisticated models are
applied and high accuracy in the quantum regions.

THE SUBBAND DECOMPOSITION METHOD (SDM)

We consider the splitting-up of the device into
confinement and transport directions by applying
the subband decomposition approach [3]. The elec-
tron evolution in the confinement direction z is
governed by the 1D Schrödinger equation
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where χp are the transversal wave functions and εp

the eigenvalues (energy subbands). The total energy
reads Ep = εp +εkin

p . The electron evolution in the
transport direction x is described by the following
hierarchy of quantum, kinetic or fluid models:
• In the stationary completely quantum case, the

2D wave functions are decomposed into the
transversal wave functions χp and the longitu-
dinal functions ϕp, which are given by a coupled
system of 1D Schrödinger equations in the trans-
port direction x. The electron density reads then
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An efficient method combining the SDM method
with the WKB approximation permits to obtain
accurate results with reduced simulation costs [4].

• A kinetic description for the electron distribution
function is given by the Boltzmann equation
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where Q accounts for electron-phonon collisions.
The electron density is written as

n(x, z, t) =
∑

p

ρp(x, t)|χp(z;x, t)|2 ,

where ρp(x, t) = (2π2)−1
∫
fp(x, k, t) dk. The

numerical treatment is realized similar as in [5]
by applying shock capturing algorithms.

• In a fluid description [6], the density of electrons
remains the same, but for the Boltzmann statistics
the occupation factor is

ρp(x, t) =
ns(x, t)∑
p
e−εp(x,t)

e−εp(x,t) .

The surface density ns satisfies the Drift-
Diffusion equation

∂ns
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−∇x · (D(∇xns + ns∇xUs)) = 0 ,

where the effective energy Us generated by the
electrons itselves is given by

Us(x, t) = − log(
∑

p

e−εp(x,t)) ,

These models are self-consistently coupled with
the Poisson equation for the electrostatic potential.
Numerical results and comparisons of the different
models will be presented. Each model accounts
for other specific physical phenomena, where the
interest of such a comparison.



Fig. 1. Electron density for a trapezoidal MOSFET device in
the quantum case for VDS = 0.2 V and VGS = 0.1 V.

Fig. 2. Potential energy for a trapezoidal MOSFET device in
the quantum case for VDS = 0.2 V and VGS = 0.1 V.
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Fig. 3. Percentage of the subband occupancy for the consid-
ered trapezoidal device in the quantum case for VDS = 0.2 V
and VGS = 0.1 V.
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Fig. 4. Comparison of the current versus drain-source voltage
characteristics in the quantum case for VGS = 0.1 V for
different device designs: rectangular MOSFETs (5 nm and 3 nm
channel width) and a trapezoidal one.
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