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We use direct approximate inversion of the time
evolution of a dissipative two–level system to iden-
tify optimal control fields. The equations of motion
are formulated within the density matrix formalism,
assuming weak coupling to a phonon bath. We
show that the problem can be solved exactly for the
isolated driven two–level system. The solution is not
unique. This strategy serves to identify approximate
solutions for the coupled case which may subse-
quently be optimized by conventional techniques.

INTRODUCTION

In semiconductor physics recent research has
concentrated on nanostructures like quantum dots
(QD) or quantum wells. Electrons confined in such
QD can be manipulated by external fields, as pro-
vided by lasers, but they also interact with their
environment, in particular with phonons, leading to
dissipation. This interaction is one of the crucial
problems which prevent complete controllability of
electronic quantum states and their temporal evolu-
tion in QD’s [1].

In this paper we present an (approximate) solu-
tion to the inverse problem of finding an optimum
control field to coherently steer a dissipative quan-
tum system.

THE ISOLATED TWO–LEVEL SYSTEM

As a starting point for our investigations we
consider an isolated 2-level quantum system, de-
scribed by the von Neumann equation
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real. Clearly the solution is not unique, as follows
immediately from inspection of the homogeneous
equation
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for arbitrary function Y . We note that to completely
control an isolated 2-level system two independent
fields are needed.

DISSIPATIVE TWO–LEVEL SYSTEM

In this case where the situation is more compli-
cated, we derive a non–Markovian density matrix
equation. Our calculations are based on a perturba-
tion theory in the electron–phonon–interaction up to
second order [2]. We take the continuum limit for
the phonon modes to obtain a realistic dissipative
model. The density matrix equation has the structure�������!��
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The dissipation part (the integral term in (3)) not
only depends on the phonon spectral density and
the temperature of the phonon bath [3], but also
on the time dependent system Hamiltonian
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containing the electric field in a dipole- interaction
(DI).



Fig. 1. Numerical results for state trapping for a simple phonon system, which contains only one resonant frequency � . a) The
optimal field founded by inversion of the density matrix equation, b) shows
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versus time, c) and d) the real-

and imaginary part of the off–diagonal element of the system density operator. The red lines show the free evolution, the evolution
with field is shown by the green lines, the target (trap) state is indicated by the blue lines. The occupation number of the phonons
is � ����� , and the electron–phonon coupling strength is ������ � � � �"! � .

Since the inversion is performed analytically,
we can identify more stable regions and less sta-
ble regions in the Hilbert space or, in this case
equivalently, the Bloch sphere. For example, for an
electron–phonon coupling which is proportional to#%$ , we find an optimal solution for a DI to trap the
state in #%$ direction. This is done by an ”inversion”
of the density matrix equations. We set� ��
��� � ` "'& ��
��# $ � (5)

where
� ` is the (diagonalised) system Hamiltonian,&*��
�� is the control field, and ”solve” (3) with
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Here M denotes the matrix
� # $ ��� � , which we will

assume as invertible. , contains all the remaining
terms contained in (3). 2 G � G 5 denotes the anti–
commutator. This expression is put into (4), which
we solve numerically.

A simple example is shown in Fig. 1 where we
seek to trap the two–level system coupled resonantly
to a single phonon mode in an excited state. It

is seen that the control field can largely suppress
the oscillation in the density matrix elements and
stabilize them in the vicinity of the constant target
state.

Further optimization of the control field ob-
tained by direct inversion is performed by standard
techniques, such as a conjugate gradient method
(see [4]) and/or a genetic algorithm.
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