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In order to apply quantum dots as electronic devices in 
the near future, a quantitative understanding of the details 
of electron transport in the dots is required. Open 
quantum dots [1], considered here, consist of small 
cavities connected to two-dimensional regions of electron 
gas (2DEG) by narrow constrictions which allow several 
modes to propagate. An interesting aspect of open 
quantum dots is the interplay of regular, quasi-regular 
and chaotic behavior of the electron transport, where one 
is concerned with the correspondence of classical and 
quantum mechanical behavior [2].  
In this work we focus on the transport in open quantum-
dot arrays regarding the correspondence of classical and 
quantum-mechanical treatments. We analyze, in 
particular, a prominent peak that was recently reported in 
the low-field magneto-resistance, MR, of a single dot and 
arrays with different numbers of dots [3,4]. Certain 
details of the behavior of this MR peak can be interpreted 
in the classical treatment only by additionally assuming 
phase-space tunneling. In the quantum-mechanical 
interpretation an important result is the opening of gaps 
in the (complex) band structure and the decay of the 
wave function along the dot array and its dependence on 
the energetic position in the gap. 
The quantum-mechanical calculation is performed by 
discretizing the Schrödinger equation onto a finite-
difference mesh and using it in its discrete form to set up 
a numerically stabilized variant of the transfer matrix 
[5,6] approach. By imposing an electron flux from the 
left, one obtains the transmission coefficient that enters 
the Landauer-Buttiker formular to give the conductance. 
For obtaining the band structure periodic boundary 
conditions are assumed at the ends of a single dot. The 
confinement is modeled by a smooth potential. 
In the classical treatment this is approximated by a 
parabolic potential. It allows us solving the equation of 
motion analytically. Choosing certain initial conditions 
(position and velocity) the further path of the electron can 
be calculated in closed form; reflected (backscattered to 
the entrance constriction) and transmitted trajectories can 
be distinguished. The weighting of the direction of the 
initial velocity v0 is chosen to be Lambert like, i.e. it 

depends as cos α on the entrance angle.  
Electrons are counted as transmitted if they hit the part of 
the boundary corresponding to the exit constriction. They 
are counted as backscattered if they hit the entrance 
constriction. 
Finally, the conductance is obtained as  
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In order to visualize the electron dynamics in the phase 
space of the array we also compute Poincaré sections. 
The Poincaré sections provide a useful numerical tool for 
testing the phase space for different magnetic fields.  We 
get a mixed phase space for the open dot array. At the 
MR peak the phase space consists of periodic and chaotic 
orbits whereas by moving the magnetic field away from 
the peak position the phase space shows quasi-periodic 
and chaotic orbits. Quasi periodic and periodic orbits 
emerge due certain initial conditions within the dot and 
are classically inaccessible. In the literature these closed 
orbits are referred to as Kalmogorov-Arnol’d-Moser 
(KAM) islands [2].  
The quantum-mechanically computed band structure 
shows, in contrast to the zero field case, band gaps at the 
MR peak. For an energy situated within the gap the 
probability density, |ψ(x,y)|2, (Fig.1), shows a fast 
exponential decay which indicates tunneling through the 
array. The |ψ(x,y)|2 in the first dot corresponds in shape 
to the backscattered trajectory of the classical calculation. 
When positioning the considered energy near the bottom 
of the gap we reveal a probability density which is 
peaked in the 3rd dot (Fig.2). The decay of |ψ(x,y)|2 is 
now weaker than in Fig.1. Again the |ψ(x,y)|2 in the 3rd 
dot can be described by a combination of two classically 
calculated trajectory with starting angle α1=227° (red) 
and α2=47° (green). Identifying the orbits as closed we 
argue that the transmission through the array is based on 
tunneling between these closed orbits. In order to 



describe the transmission through the dot the classically 
inaccessible regions existing in the mixed phased space 
have to be taken into account. This is only possible by 
assuming phase space tunneling introduced above. 
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Fig. 1.  (a) The calculated conductance as a function of energy 
at the magnetic field position of the MR peak. The Green point 
indicates the energy position for the calculated |ψ(x,y)|2. (b) 
|ψ(x,y)|2 looks like an open, backscattered trajectory of the 
classical calculation (superimposed in red in the 1st dot).  
 

 
Fig. 2 (a) The calculated conductance as a function of energy at 
the magnetic field position above the MR peak. The green point 
indicates the energy position for the calculated |ψ(x,y)|2. (b)  
The |ψ(x,y)|2 in the 3rd resembles two closed trajectories (red 
and green) that are classically inaccessible from the outside, 
indicating that conductance is only possible by assuming phase-
space tunnelling. 

 

 
Fig. 3.  (a) Poincaré section at the MR peak. (b) A periodic 
orbit (blue open symbols), (c) backscattered trajectory (red open 
symbols) (d) chaotic trajectory (green points). The arrows mark 
points representing vx and x at y=0 on the trajectories shown. 
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