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Abstract
New simulation tools are required to correctly

capture the physics of strongly interacting systems.
Here, we present results of a new technique for
extracting the many-body conductance for
interacting systems in two or three dimensions.  Our
approach is to extend many-body path integral
Monte Carlo  (PIMC) simulations, which we have
used for small quantum dots [1], to much larger,
two-dimensional, simulations of several different
quantum point contact (QPC).  In each QPC, we
simulate up to two hundred fully interacting
electrons in a fully quantum many-body framework.
This technique allows the seamless simulation of
both the dense 2DEG in the contacts and a low-
density, quasi-1D correlated electron distribution in
the device, as illustrated in Fig. 1.

Estimating the Conductance
To estimate the DC conductance, we collect the

current-current correlation function, which we
measure in imaginary time (illustrated in Fig. 2),
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The Fourier transform is a set of real amplitudes at

the bosonic Matsubara frequencies,
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The conductivity is then given by the Kubo formula,
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To obtain ( )w;', xxP  requires analytic continuation
from the Matsubara frequencies, formally denoted
as dww ini +® .  The di part of the notation

dictates that for the retarded Green s functions, the
real frequency axis must be approached in the
upper-half plane.  Therefore, we must use the
collected data for the Matsubara frequencies in the
upper-half plane and analytically continue them to
small real-valued frequencies.  Once the
conductivity is then fit to a Drude formula based
model and the DC conductance is extracted.

QPC with Several Hundred Electrons
 Here we take a simple analytic expression [2]

for a split-gate QPC that is 200 nm in length and 50
nm in width containing 200 total electrons (100 spin
up and 100 spin down).  We obtain the current-
current correlation functions, as described in the
previous section, as well as the electron density and
correlation functions.  In Fig. 3, we plot the
conductivity at the first Matsubara frequency for Vg

= -0.3 V.  We find that it is essentially diagonal and
that the conductivity is suppressed within the
channel and that the transport is purely local in
nature.  In Fig. 4, we plot the DC conductance for
Vg = -0.3 V.  We solve for the conductance in the
steady-state limit using an N-point Padé
approximation.  Here we see that the conductance is
also suppressed in the channel corresponding to the
high negative gate bias.  While the conductance is
low, the conductance is still higher than in the case
of the non-interacting electrons as the interactions
force the electrons to higher energies.

Further, we will show that our new method
yields the same conductance values as that of
Green s functions in the non-interacting system and
analyze the resultant Kondo behavior near pinch-
off.
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Fig. 1. Example of charge density in and around a model QPC,

as calculated with our new many-body PIMC technique. The

method seamlessly includes both the dense 2DEG outside the

channel and the highly-correlated, quasi-1D electron ordering

within the device.

Fig. 2.  A schematic illustration of collecting charge current

density information from the PIMC.  We set up discrete real-

space bins, then histogram the location and velocities of

discretized beads.  We then use an FFT to convolve the data for

the relative time separations and collect the current-current

correlation functions over many path configurations.

Fig. 3.  The conductivity at the first Matsubara frequency, as

calculated by sampling the current-current correlation function

for 200 interacting electrons at Vg = -0.3 V. The device is in the

range -100 nm < x < 100 nm and is coupled to wide leads,

which display much higher conductivity.
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Fig. 4.  DC conductivity as extrapolated using an N-point Padé

approximation at Vg = -0.3 V.  While the conductance is quite

clear, the off-diagonal values represent statistical noise in our

simulation which may be reduced with longer Monte Carlo

runs.
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