
A Novel Framework for Distributing Computations
T. Fühner, S. Popp∗, and T. Jung

Fraunhofer Institute of Integrated Systems and Device Technology,
Schottkystrasse 10, 91058 Erlangen, Germany, fuehner@iisb.fraunhofer.de

∗ University of Applied Science Regensburg, Department of Computer Science and Mathematics,
Universitaetsstrasse 31, 93053 Regensburg, Germany, st.popp@gmx.de

I. INTRODUCTION

Decreasing costs and increasing performance
characteristics of desktop-style computers lead to
a significant displacement of traditional supercom-
puters. Nowadays, many of the high-performing
computer systems are based on networks of standard
PC computers (clusters) [1]. In order to efficiently
make use of those distributed systems, sophisticated
parallel programming techniques are required.

There is large number of programming frame-
works that deal with this. Among them are:

– Message Passing Interface (MPI): A commu-
nication framework which provides a high-level in-
terface for parallelization tasks on distributed mem-
ory systems [2]. Including fault-tolerance and load-
balancing mechanisms has to be specially tailored
per application. In addition, there is a number of
different MPI implementations, many of which are
not compatible to each other.

– Parallel Virtual Machine (PVM): This ap-
proach uses a virtual machine in which a network
of heterogeneous hosts is represented as one par-
allel computer to the application [3]. In contrast
to MPI, PVM provides a basic mechanism for
fault tolerance: The failure of one node will not
lead to a crash of the entire multi-node/-process
application. As a drawback, compared to MPI PVM
lacks a feature-rich communication interface (an
often stated shortcoming is the lack of non-blocking
operations).

II. D ISPYTE
In this work we propose a new concept: A Dis-

patchable Python Tasks Environment (DisPyTE),
implemented in the free, efficient, and increasingly
popular interpreter language Python [4]. The main
design and implementation goals of this frame-
work are fault-tolerance and an easy-to-use load-

balancing mechanism. Another important criterion
was to achieve a maximum facility in both applica-
tion and implementation.

The result is a requester/worker type implementa-
tion (see Fig. 1). The main components of DisPyTE
are:

– Worker: Workers are realized as processes re-
siding on any computers within the network. They
are connected to by the requesters’ administrator.
Once aWorker receives a task, it it will be com-
puted, and the result is sent back to the administra-
tor.

– Proxy Factory: The factory checks whether
new Workers are available, generating a proxy for
each of them. Proxies are made available to the
Admin. Additionally, failures ofWorkers are com-
municated to theAdmin.

– Admin: This module manages the actual dis-
tribution process. It keeps track of the state of the
Workers and distributes the tasks accordingly.

– Producer: The Producer generatesTasks. A
task is conferred on theAdmin, which assigns it
to the next idleWorker (using the corresponding
Proxy). Once aWorker has completed a task, the
result is transferred to theRequester using a call-
back routine.

The Proxy Factory, theAdmin, and theProducer
are within the scope of the same process. No extra
programs such as schedulers are required. Anim-
plicit load-balancing mechanism is inherent, since
the Admin is assigning tasks only to idleWorkers.
Thus, for example, aWorker that is twice as fast
as another one, will in general be assigned twice
as many tasks. The proposed approach is also fault-
tolerant: If a Worker fails, the pending task is re-
assigned to a differentWorker. Even in case no
Workers are available (any longer), theAdmin will
wait for new computing entities to attach.

DisPyTE does not depend on a specific inter-
process communication (IPC) mechanism. As a first
implementation the Python package Twisted proved
an ideal framework [5]. It provides a wide range
of protocols and is freely available for all platforms
that support Python.

III. A PPLICATION EXAMPLE : GENETIC
ALGORITHM

A genetic algorithm (GA) is a heuristic global
optimization routine, which is well suited for op-
timization tasks that exhibit little information on
the search space [6]. Each GA iteration consists
of the following two steps: (1) evaluation of the
(current) set of solutions and (2) recombination of
these solutions. The implicitly parallel behavior of
GAs can be exploited in a straightforward manner
using a distributed system (see Fig. 2).

In order to use DisPyTE as the underlying distri-
bution layer, following steps are required:

– Producer implementation: The GA “produces”
a set of solutions per iteration. Instead of directly
evaluating these solutions, they act as tasks of a
DisPyTE Producer and are hence distributed to
availableWorkers.

– Worker implementation: A Worker’s job in
the context of a GA is to compute the merit of
a specific parameter set. As DisPyTE is using a
callback mechanism, the only adjustment that has
to be made is to have the DisPyTEWorker call the
object function.

IV. CONCLUSIONS

The proposed DisPyTE framework proved very
reliable and well suited for the described task.
Especially in the regime of heavily loaded desk-
top computers, the fault-tolerance and the implicit
load-balancing mechanisms payed off well. A very
moderate implementation effort had to be made in
order to use DisPyTE for the parallelization of the
genetic algorithm. The concept has already been
successfully applied to the optimization of crystal
growth and lithography simulation processes (for a
discussion on these applications see [7] and [8],
resp.). Future work on DisPyTE will be focused
on the integration of explicit load-balancing mech-
anisms. Moreover, as this design seems well suited
for other parallelization tasks, it is also planned

to adapt additional applications such that they can
make use of DisPyTE.

REFERENCES

[1] TOP500 Supercomputer Sites.www.top500.org.
[2] W. Gropp, E. Lusk, and A. Skjellum.Portable Parallel

Programming with the Message Passing Interface. MIT
Press, Cambridge, MA, 1999.

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam.PVM: Parallel Virtual Machine. MIT
press, 1994.

[4] Programming Language Python Homepage. www.
python.org.

[5] A. Fetting. Twisted Network Programming Essentials.
O’Reilly, Sebastopol, CA, 2005.

[6] D. E. Goldberg.Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, Reading,
MA, 1989.

[7] T. Fühner and T. Jung. Use of genetic algorithms for the
development and optimization of crystal growth processes.
Journal of Crystal Growth, 266(1-3):229–238, 2004.

[8] T. Fühner, A. Erdmann, R. Farkas, B. Tollkühn, and
G. Kókai. Genetic algorithms to improve mask and
illumination geometries in lithographic imaging systems.
In Raidl et al., editor,EvoWorkshops 2004, pages 208–217,
2004.

Proxy

Producer

Worker

node 1

Worker

Worker

node 2

Worker

node n

Worker

Proxy

Proxy

Proxy

Proxy Factory
Task

Admin

Requester

Task

Task

Callback

inter−process

communiction (IPC)IPCIPC IPC

result

submit

find idle Worker

and assign

...

...

...

Fig. 1. Main components and call scheme of DisPyTE.

master clients

(1) Evaluation

(2) Recombination

Set of Solutions

Solution 1
Solution 2
Solution 3

Solution n

node 1

node 2

node 3

node m

.

.

.

Solution m

Solution n − 1

 i
+

1

i

t

 :

=
 t

+

 1

first set of parallel evaluations

last set of parallel evaluations

Fig. 2. Distributed computations in the GA regime.

