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INTRODUCTION

The calibration of phenomenological models of 
semiconductors is one of the most important tasks in 
the modeling and analysis of an electronic device. 
Before a model is used to analyze a semiconductor 
device, the model parameters should be carefully 
identified by using more elaborate physical models. 
In the case of the Density-Gradient model (DGM), 
the electron and hole effective masses should be 
computed by using self-consistent Poisson-
Schrödinger computations. 

The existing methods for the computation of 
electron and hole effective masses are based on the 
comparison of the model with 1D Poisson-
Schrödinger computations. While this approach is 
appropriate for devices in which the carriers are 
confined in only one direction, it is not appropriate 
for devices in which the carriers are confined in 
more than one direction, such as short-channel 
MOSFETs, SOI devices, Fin-FETs, etc. In this 
article we calibrate the DGM against 2- and 3-
dimensional Schrödinger computations. We focus 
mainly on the computation of electron effective 
mass, since it enters directly in the equations of the 
electron current density in n-channel transistors, 
which are widely used in integrated circuits. 

TECHNICAL APPROACH AND DISCUSSION

In the framework of the DGM, the electron 
concentration at thermal equilibrium can be 
computed by using the following partial differential 
equation [1]: 
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where n T  is some function that depends on the 

nature of electron statistics used, ,eff nm  is the 
electron effective mass, and all other notations have 
their usual meaning. Due to the low-order 
approximations involved in the derivation of (1) it is 
unrealistic to use the experimental value of ,eff nm
and the electron effective mass in (1) should be 
treated as a fitting parameter.  

It should be noted that there is no unanimous 
agreement on the values of ,eff nm  presented in the 
literature and the results obtained vary from 

00.175m  in [2] to 00.278m  in [3]. The common 
feature of the existing identification techniques is 
that ,eff nm  is calibrated against results obtained by 
solving the 1D Schrödinger equation in the direction 
perpendicular to the oxide layer of MOS devices. In 
this way, it is tacitly assumed that the motion of 
electrons and holes is quantized only in the direction 
perpendicular to the oxide and it is described by 
classical statistics in the other two directions. In the 
following we present a technique based on the 
multidimensional effective-mass Schrödinger 
equation that overcomes the limitations of the 
existing methods. To simplify numerical 
computations, let us consider that the electrostatic 
potential is given a-priori and we can compute the 
electron concentration by using the effective-mass 
Schrödinger equation. The electron effective mass 
can then be computed either by integrating equation 
(1) or by fitting the electron concentration obtained 
from (1) to the electron concentration obtained from 
the Schrödinger equation. This approach has the 
advantage that it avoids expensive Poisson-



Schrödinger computations. Moreover, for particular 
shapes of the quantum region the eigenvalues and 
eigenfunctions of the Hamiltonian can be computed 
analytically and solving the Schrödinger equation 
numerically can be completely avoided. For 
example, if we consider a 2D quantum box with 
infinite walls (see Fig. 1), the electron effective 
mass depends of the spatial coordinates as in Fig. 2. 
For a 10 20 nm quantum box in which the 
electrostatic potential is increasing exponentially, 
the electron concentration is presented in Fig. 3 for 
various potential profiles. In these computations 

,eff nm  is assumed constant and it is found by fitting 
the results obtained by the Schrödinger equation to 
equation (1). 

In Fig. 4 we present the values of the electron 
effective mass computed for different sizes and 
shapes of the quantum box. We clearly observe that 

,eff nm  changes from 00.14m  in the case 

when x zL L , to 00.24m  for x zL L . In numerical 
simulations one should use the value of the electron 
effective mass which corresponds to the 
approximate size of the quantum region. In the case 
of short channel MOSFET devices, ,eff nm  lies 

between 00.14m  and 00.24m , depending on the 
values of eff effW L  (the effective width divided by 
the effective length of the conduction channel), as 
well as on the epitaxial cut of the silicon crystal. For 
short-channel MOSFET devices, ,eff nm  is either 

00.15m  or 00.24m , depending on whether the x-axis 
is along or perpendicular to the conduction channel. 
Our analysis also suggests that the existing 
discrepancies in the literature on the values of ,eff nm
originate from the different sizes of the quantum 
regions used in simulations. 
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Fig. 1. 2D quantum box with infinite walls. 

Fig. 2. Electron effective mass computed by integrating eq. (1) , 
in which n was obtained by solving Schrödinger eq. for Si(100).  
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Fig. 3.  Electron concentration cross-sections through the 
middle plane of a 10x20 nm rectangular quantum box. 
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Fig. 4. Electron effective mass that gives the best agreement 
between the electron concentration computed by using the 2D 
Schrödinger equation and the 2D Density-Gradient model, 
respectively, for a rectangular quantum box. The dimensions of 
the box are indicated on the abscissa. 
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