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Abstract— We propose a method to self-consistently deal with Our group has adapted its experience from semiconductor
polarisation effects in Monte Carlo particle simulation of charge  device simulations to develop implicit water transport Monte
transport. The systems of interest were membrane structures with Carlo methodologies that may be applied to ion channel sim-

a narrow (4-8 A) carbon nanotube (CNT) channel in an aqueous . - .
environment. Due to computational limitations for Molecular ulations [1]. Figure 1 shows the flow chart of this method. So

Dynamics (MD) computations we extended the Transport Monte far, this approach showed good aggrement with experimental
Carlo known from semiconductor simulations to ionic transport data and makes it possible to simulate the transport up to

in water as a background medium [1]. This method has been microsecond or millisecon scale, yielding results with high
used successfully to compute transport rates of ions in biological gtatistical significance.

channels but polarization effects on protein walls cannot be As the Poi | . h ittiviti f h
easily included self-consistently, due to the complexity of the S the Foisson solver requires the permittiviies ot eac

structure. Since CNTs have a regular structure, it is instead Part of the domain, in previous calculations bulk dielectric
practical to include a self-consistent scheme that accounts for the constants were used. This, of course, does not account for

charge redistribution on the channel wall when a external bias is the fact that single molecules in the system exhibit different
applied or when the electrical field of a passing ion is screened behavior than bulk and becomes even more problematic for

out. Previous work has shown that this is necessary and the I lized with CNT h he del lized el
computationally efficient tight-binding (TB) approach developed pore walls realized wit s, where the delocalized electrons

there [2] is coupled to transport Monte Carlo simulation in this ~can move along the tube easily.
work. In order to account for this effect a quantum mechanical
treatment of the electronic structure becomes necessary. As
the self-consistent charge distribution on the CNT has to be
In recent years both the fields of CNT and ion channeécalculated frequently a fast method is required. The semi-
research have been very active. While CNTs are promisisgnpirical TB approach fulfills this requirement [8]. In this
in many respects because of their mechanical and electropioof of concept, a single orbital, nearest neighbor scheme
properties [3], biological ion channels on the other hand hak@s been integrated into the Monte Carlo code 2. One of the
received considerable attention both because they behave bkeained trajectories is shown in figure 3.
nanoscale devices and because the causes of many diseasgsious comparisons between old and new model have been
are linked to them. This makes them very interesting fserformed. The average fields like showed in Fig. 4 exhibit
develop new applications in bioengineering so that a betigfge differences and the transport rates changed by up to 50%.
understanding of the transport mechanisms is required for fResults for different biases and ion types, were qualitatively
development of more efficient drugs or the development gfe same for CNTs of different sizes.
highly specific biosensors. In this respect, CNTs are usefulwe identified the solution of the poisson equation as a
prototypes for biomimetic applications in artificial membranesomputational bottleneck and work is in progress to parallelize
due to their simple structure [4], [5]. What makes them evefis part of the code. This might allow highly precise simula-
more interesting is the possibility to produce functionalizegons with even smaller time steps and mesh spacing. In the
CNTs which are biocompatible and selective to certain typgsng term, our goal is to realize a platform for bioelectronics
of ions [6], [7]. simulations comparable to the known tools for the design of
semiconductor devices.
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