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INTRODUCTION 

Double gate (DG) structures are promising 
architectures likely to overcome short channel 
effects in nanometer scaled MOSFET. In sub 50 nm 
MOSFETs, TSi (Si body thickness) should be 
typically less than 10 nm to obtain good 
performances in both off and on states [1]. In order 
to accurately describe these transistors, quantum 
effects in the transverse direction and also quasi-
ballistic carrier transports need to be taken into 
account.  

MODEL 

Inspired by the mode-space approach of quantum 
transport [2] and the MC technique developed in 
ref. [3], our Monte Carlo simulations of DG 
MOSFET are self consistently coupled with 1D 
Schrödinger equation (cf. Fig 1 and Fig 2). Then, 
the x-axis, along which the carrier movement is 
supposed to be semi-classical, is separated from the 
z axis along which the energy is quantized (energies 
En and wavefunctions ξn(z) associated with the sub-
bands ‘n’). 

2D scattering mechanisms included in the 
simulation are bulk phonon and impurity 
scatterings, taking non parabolic and ellipsoidal 
band structures into account [4]. Roughness 
scattering treatment is underway and is not included 
in these preliminary results. 

RESULTS 

The simulated 15 nm-long DGMOS device is 
described in Fig. 1. Fig. 3 presents the evolution of 
the quantized energies in the structures and the 
square of wave function associated with the first 
sub-band. In accordance with the mode space 
approach [2], the profile of this wavefunction does 
not significantly depend on x, even in the high 
electric field region (drain end). Fig. 4 clearly 
indicates that the electrons are moved away from 

the Si/SiO2 interface due to quantum repulsion in 
the whole structure.  

As the velocities in this 15 nm long channel, 
shown in Fig. 5, are much higher than the stationary 
saturation velocity (about 105 m/s), the carrier 
transport is far from equilibrium. Moreover, Fig. 5 
exhibits hot electron transfer from the lowest energy 
sub-band to higher sub-bands, in particular near the 
drain region. As a consequence, the sub-band 
occupation in the channel strongly differs from that 
obtained with a 1D Schrödinger-Poisson algorithm 
in which equilibrium distribution is assumed. 

At last, Fig. 6 presents the drain current as a 
function of the gate voltage for both classical (3Dk) 
and multi sub-band (2Dk) simulations. The current 
is only softly modified by quantization effects.  

CONCLUSION 

Multi sub-band description allows us to properly 
include the effects of quasi-ballistic transport and 
scattering on sub-band occupancy in nanoscale 
devices. With the price of a large increase of 
computation time, it gives a more accurate 
description of density profile and carrier transport 
than quantum correction approach. A detailed 
investigation of transport, ballisticity and I-V 
characteristics including the roughness influence 
will be presented at the conference.  

REFERENCES 

[1] Saint-Martin J. et al., Comparison of multiple-gate 
MOSFET architectures using Monte Carlo simulation, 
Solid State Electronics, in Press. 

[2] Venugopal R. et al., Simulating Quantum Transport in 
Nanoscale MOSFETs: Real vs. Mode Space Approaches, J. 
Appl. Phys. 92, 3730 (2002).  

[3] Fischetti M.V., Laux S.E. Monte Carlo study of electron 
transport in silicon inversion layers, Phys. Rev. B 48, 2244 
(1993). 

[4] Monsef F. et al., Electron transport in Si/SiGe modulation-
doped heterostructures using Monte Carlo simulation, J. 
Appl Phys. 95, 35870 (2004). 



 

 

 

2Dk carrier movement 
with 2Dk scattering 

mechanisms 

Electric field ( nF
r

) calculation 
(for each sub-band)Density calculation 

2D Poisson equation 

nF
r

=
dx

)x(dE n  

nξ (z,x0), nE (x0) n(x0,z) ∑ ξ∝
xoN

2
0n )z,x(  

V(x,z) 

Nxo: Number of 
electrons 
in each  
x0-slice 

1D Schrödinger equations 
2

0 n 0 n 0 n 0
1 V(z, x ) . (z, x ) E (x ). (z, x )

2 z m* z
∂ ∂⎡ ⎤− + ξ = ξ⎢ ⎥∂ ∂⎣ ⎦

h

(for each x0-slice)

MONTE CARLO  

 

Fig. 1.  Schematic of DGMOS structure Fig. 2.  Multi sub-band Monte-Carlo algorithm 
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Fig. 3.  Quantized energy evolutions along x axis. Inset: 2D 
cartography of square wavefunction of the first sub-band. NB. : 
nonprime and prime sub-bands have a quantization mass of 
0.916.m0 and 0.19.m0, respectively 

Fig. 4.  Electron density versus distance z by including 2Dk 
(continuous lines) or not 3Dk (dashed lines) quantization effects. 
Inset: 2D cartography of electron density  
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Fig. 5.  Average velocity vx and sheet density of first sub-bands 
versus distance x. N.B: E1’>E2>E1. 

Fig. 6.  Drain current ID versus Gate voltage VGS by including 2Dk 
(continuous lines) or not 3Dk (dashed lines) quantization effects. 
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