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In the past, several attempts have been made to in-
troduce collisional broadening in semiclassical electron
transport Monte Carlo (MC) simulations [1, 2]. The
inclusion of energy non-conservation at each scattering
event has produced non-physical instabilities. In this
work we propose an algorithm which overcomes the
difficulties encountered in previous approaches. More-
over, it is suitable for a direct implementation in device
modelling, since it can be easily introduced in existing
MC simulators. The scaling of device architecture will
shortly require this effect to be taken into account in
simulations.
In order to include energy broadening without losing
long term energy conservation, one must consider the
following:
1. That the overall energy in transport is conserved
because the Hamiltonian for the total system of the
electron(s) and phonons is time independent.
2. In an electron-phonon interaction the crystal-
momentum conservation, in a homogeneous system, is
guaranteed by the matrix elements.
3. An electron can be scattered to a state with an energy
not given by the simple balance between the energy
before scattering and the energy of the involved phonon.
This is due to the fact that the final state, considered in
transition, is an eigenstate of the unperturbed Hamilto-
nian, which is not a state of well defined energy in the
total interacting system.
Therefore we may assume that the energy is conserved
at each scattering event. In fact, in the two-time Wigner-
function approach a frequency contribution is transferred
to the electron equal to the frequency of the phonon [3].
But, we have to distinguish the true “frequency energy”

of the electron E from the “momentum energy” E ′:

E ′ =
p2

2m
(1)

Because of collisions, the energy-momentum relation is
no longer given by equation (1), but it broadens.
In this type of MC simulation, it is necessary to keep
track of both E and E ′. The energy exchanged at each
scattering event is determined by the phonon frequency
ωph, and the momentum exchanged is determined by the
phonon wave-vector q. But, the final electron energy and
electron momentum are not necessarily related by (1).
The energy spreading is related to the time between
collisions via the Heisenberg uncertainty relation:

σEi ≈ h̄
ti − t(i−1)

(2)

Where ti is the time at which the i-th scattering event
takes place.
The MC algorithm will then proceed as follows.
Initial state:
The semiclassical simulation starts at time t = t0; the ini-
tial momentum p0 is generated according to the thermal
distribution, the initial energy E0 is calculated according
to (1).
Flights:
The duration (ti− t(i−1)) of the flights is determined, in a
traditional way, according to the scattering probabilities,
including self-scattering. The value of the momentum at
the end of the flights is pib (where b stands for “be-
fore” the scattering event) and is determined classically.
Starting from the value p(i−1)a “after” the previous scat-
tering, the variation in the momentum can be calculated
classically:

Δpi = eF(ti − t(i−1)) (3)

Introducing Energy Broadening in Semiclassical

Monte Carlo Simulations



Where F is the field (assumed to be constant and uniform
within the flight) acting on the system. Under the action
of the electric field, the variation Δ f Ei of the energy
during the i-th flight is determined by the distance Δz
covered by the electron:

Δzi =
p(i−1)a

m
(ti − t(i−1))+

1
2

eF
m

(ti − t(i−1))2 (4)

The energy variation is therefore:

Δ f Ei = eFΔzi (5)

The energies at the end of each flight can be easily
calculated from the above equation:

Eib = E(i−1)a +Δ f Ei (6)

Scattering events:
Firstly, for simplicity, we limit ourselves to the case of
scattering from non-polar optical and acoustic phonons,
within the elastic approximation, and with deformation
potential interaction.
At the time ti a scattering event occurs. Before each
scattering event the position can be calculated from
equation (4), allowing a relatively simple implementation
of this algorithm in a device simulation. At the scattering
time ti, a new energy E ′

ib is defined, taking into account
the energy broadening δEi. This is chosen from a distri-
bution determined using the standard deviation given by
equation (2):

E ′
ib = Eib +δEi (7)

The new value of E ′
ib is calculated based on the value

of the true electron energy Eib. The type of scattering
is determined using the probabilities P(E ′

ib). Applying
this approach, the energy non conservation due to the
flight duration is taken into account, affecting the type of
process chosen as scattering. If self scattering is chosen,
then the flight continues. If true scattering is chosen, the
new values for the electron energy and momentum are
determined as follows:

Eia = Eib ±h̄ω0 (8)

E ′
ia = E ′

ib ±h̄ω0 (9)

pia =

√
E ′

ia

2m
(10)

The orientation of the momentum is chosen from an
isotropic distribution; once pia is calculated then the q
of the phonon is determined. The sign ± corresponds to
an absorption or emission process.
The new energy E ′

ib is calculated based on the value of
the true electron energy Eib, not on the previous E ′

ib,

so that the energy broadening is not propagated from
one scattering event to the following ones. Moreover,
no memory of the energy broadening that occurred in
the previous scattering event is retained. The energy
spreading given by equation (2) is calculated according
to the time interval (ti − t(i−1)). With this approach, a
physical collisional broadening is accounted for. This
influences threshold processes, such as impact ionisation
or oxide penetration. The overall energy conservation is,
however, guaranteed and the stability of the system is
achieved.
Initially this algorithm has been tested on bulk semicon-
ductors, in order to understand the effect on threshold
processes, before application to realistic device models.
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