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Density-gradient (DG) theory has come into wide use as
a physically well-founded approximate treatment of
quantum confinement effects that is well suited for
engineering-oriented applications including in multi-
dimensions.  DG theory has also been applied successfully
to quantum mechanical tunneling [1], however, this
application has received far less attention in part because it
has been studied mostly in one dimension where direct
quantum mechanical methods (e.g., using the Keldysh
formalism) are a realistic alternative.  At the last IWCE
workshop I presented a DG treatment of multi-dimensional
tunneling from ideal metals [2].  This research direction is
continued here with a first DG analysis of direct, elastic
tunneling from semiconductors in multi-dimensions.

The previous DG treatment of multi-dimensional
tunneling from ideal metals [2] was simplified by the fact
that, with the solution in the metal known, one could focus
entirely on the electron transport in the barrier.  The case of
semiconductor tunneling is harder of course because one
must analyze the transport in the semiconductors as well as
in the barrier.  In this regard, an important aspect of the
approximate DG approach is its unified character:
Essentially the same basic partial differential equations are
applied inside the semiconductors and in the barrier, and
these equations are solved simultaneously without involving
eigenvalue problems or self-consistency iterations.  The
chief differences between the transport equations in the
semiconductors and in the barrier arise from the relative
importance of scattering.  In the semiconductors the
transport can be regarded as dominated by scattering so that
the electron population tends to act as a single gas obeying a
quantum-corrected drift-diffusion-like description, whereas
in the barrier scattering is neglected (“elastic” tunneling)
and, among other things, this implies that carrier populations
emitted from different electrodes will not mix and must be
treated separately.  All of these features were present in the
one-dimensional treatment presented in [1].  Also entirely
analogous to the 1-D treatment are the boundary conditions,
including the tunneling recombination velocity conditions
[1] and the bandgap blocking effect depicted in Fig. 1 [3].
As in [2], the primary new ingredient in multi-dimensions
enters through the steady-state continuity equation

nvn = 0 that, unlike in one-dimension, cannot be
integrated analytically.  As a result, it becomes necessary to
solve it for the velocity field in the barrier in order to find
out where the electrons go, and obviously this equation must
be solved simultaneously with the other governing

equations.  These equations, various useful transformations
of them, and their numerical solution will all be given brief
coverage in the presentation.

Although quantitative verification of the DG description
of tunneling (and of descriptions of tunneling in devices
generally) is an important topic [1-3], as a practical matter it
tends not to be that critical because of the exponential
dependence of the calculated tunneling currents on various
physical parameters that are rarely known with much
accuracy, e.g., the precise geometry, tunneling effective
masses or barrier heights.  For this reason, in this work the
focus is on solutions of the DG equations, and on
understanding their qualitative meaning and implications.
As a first such solution, in Fig. 2 the importance of the
bandgap blocking effect (Fig. 1) is explored in 1D by
simulating a Si-SiO2-Si tunnel diode with asymmetrical
doping.  As seen, the bandgap blocking effect is essential for
getting the correct built-in voltage and the necessarily zero
current at zero voltage (at least to good approximation).  The
kink seen near 0.1V is associated with the fact that for biases
below the built-in voltage it is the forward current that is
blocked by the bandgap.  Representative conduction band
and density profiles for the diode (with electron flow from
left to right) are shown in Fig. 3; evident is the downstream
depletion layer that, as it grows, causes the bandgap
blocking effect to diminish with bias as seen in Fig. 2.
Illustrating the use of the same DG equations (with bandgap
blocking) in multi-dimensions, Fig. 4 shows a 2-D contour
plot of the electron density in an n-channel SOI transistor
with VSD = 0 and VG = 0.5V.  This FET has a gate length of
50nm and an oxide thickness that varies from 3nm at the
source and drain to 1.5nm at the center of the device (i.e., an
“oxide smile”).  In this plot as well as in the plots of current
density in Figs. 5 and 6, the expected dominance of
tunneling at the center where the oxide is thinnest is evident.
These and other results illustrating the power and also the
limitations of the DG approach for modeling devices that
involve multi-dimensional semiconductor tunneling will be
discussed in the presentation.
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Fig. 1.  Band diagram depicting the bandgap blocking effect in
semiconductor tunneling.

Fig. 3.  Conduction band barrier and electron density in an
asymmetrically doped SIS tunnel diode with V = -0.25V.

Fig. 2.  Calculated J-V characteristic in an SIS diode showing
the essential contribution of bandgap blocking at low voltage.

Fig. 4.  Electron density contour plot in a 50nm gate
length SOI FET with a non-uniform gate oxide.

Fig. 5. Current density contour plot in a 50nm gate length n-
channel SOI FET with a non-uniform gate oxide, VG = -0.5
and VSD = 0V.

Fig. 6.  Gate current density in the n-channel SOI FET
with VSD = 0V.and VG a parameter.




