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Double-gate {DG) MOS transistor structures have been proposed to boost the performance of scaled-down
logic devices and to overcome some of the most severe problems encountered in butk MOS field-effect tran-
sistors {1]. However, with channel lengths below 25 nm, the question of the importance of quantum effects
in the lateral direction, such as source-to-drain tunneling, arises. Frequently, ballistic transport is assumed
which allows the device to be simulated using pure quantum-mechanical approaches [2-4]. However, with
carrier mean free paths in the range of several nanometers, scattering-limited transport may still be
dominant which can be assessed using the Monte Carlo method by accounting for quantum-correction
methods [5,6]. An approach accounting for both, quantum interference phenomena and scattering pro-
cesses, is based on the Wigner equation augmented by the Boltzmann collision operator,
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with the Wigner potential defined by
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This equation can be solved using the Monte Carlo method [7,8]. We report on the enhancement of the
Wigner Monte Carlo simulator described in [8] for the simulation of silicon-based devices. The algorithm
for annihilation of numerical particles now takes into account the multi-valley band structure of silicon. As
test devices we use double-gate MOSFETSs with gate lengths of 60 nm, 25nm, and 10nm. For simplicity,
metal gates with midgap work function have been assumed, and a silicon dioxide thickness of 0.75 nm
without wave function penetration was used. A source/drain doping of 5 x 101® cm™? with abrupt doping
profile and a channel doping of 1 x 10'5em~ was chosen, as shown for the 25nm device in Fig. 1.
Transport has been calculated non-selfconsistently in the first subband calculated by lateral quantization
(m;=0.911np), based on a drift-diffusion simulation with MiNIMOS-NT. Fig. 2 shows the conduction band
edge and the respective subband along the channel. Fig. 3 shows the Wigner generation rate along the
channel for a drain bias of 8.1 V and 0.8V in a 60nm gate length device. The mean electron energy is
shown in Fig. 4, and the corresponding carrier concentrations of a 15nm and 10nm gate length device
are depicted in Fig. 5 for a bias of 0.1V and 0.8V, respectively. The output characteristics of the 25nm
device shown in Fig. 6 indicates that at this gate length, devices are still dominated by scattering and
the assumption of coherent transport overestimates the current density at least by a factor of two.
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Figure 1: The double-gate MOS structure Figure 2: Conduction band edge and first

considered for the simulations.
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Figure 3: The Wigner generation rate in the 60nm Figure 4: The mean particle energy in the 60nm
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Figure 5: The carrier concentrations in the 15nm
(top} and 15nm (bottom) device at dif-
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Figure 6: Output characteristics of the 25 nm de-

vice using classical, coherent Wigner,
and non-coherent Wigner Monte Carlo.
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