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Double-gate (DG) MOS transistor structures have been proposed to boost the performance of scaled-down 
logic devices and to overcome some of the most severe problems encountered in bulk MOS field-effect tran- 
sistors 111. However, with channel lengths below 25nm, the question of the importance of quantum effects 
in the lateral direction, such as source-to-drain tunneling, arises. Frequently. ballistic transport is assumed 
which allows the device to he simulated using pure quantum-mechanical approaches [24] .  However, with 
carrier mean free paths in the range of several nanometers, scattering-limited transport may still be 
dominant which can he assessed using the Monte Carlo method by accounting for quantum-correction 
methods [5,6]. An approach accounting for both, quantum interference phenomena and scattering pro- 
cesses, is based on the Wigner equation augmented by the Boltzmann collision operator, 

with the Wigner potential defined by 

This equation can he solved using the Monte Carlo method [7,8]. We report on the enhancement of the 
Wigner Monte Carlo simulator described in [8] for the simulation of silicon-based devices. The algorithm 
for annihilation of numerical particles now takes into account the multi-valley hand structure of silicon. As 
test devices we use double-gate MOSFETs with gate lengths of GOnm, 25nm, and 10nm. For simplicity, 
metal gates with midgap work function have been assumed, and a silicon dioxide thickness of 0.75 nm 
without wave function penetration was used. A source/drain doping of 5 x 10'' cm-3 with abrupt doping 
profile and a channel doping of 1 x 10'5cm-3 was chosen, as shown for the 25nm device in Fig. 1.  
Transport has been calculated non-selfconsiste~tly in the first subband calculated by lateral quantization 
(ml=0.91 mo), based on a drift-diffusion simulation with MINIMOS-NT. Fig. 2 shows the conduction hand 
edge and the respective subband along the channel. Fig. 3 shows the Wigner generation rate along the 
channel for a drain bias of 0.1 V and 0.8V in a 60nm gate length device. The mean electron energy is 
shown in Fig. 4, and the corresponding carrier concentrations of a 15nm and 10nm gate length device 
are depicted in Fig. 5 for a bias of 0.1 V and 0.8V, respectively. The output characteristics of the 25nm 
device shown in Fig. G indicates that at  this gate length, devices are still dominated by scattering and 
the assumption of coherent transport overestimates the current density at least by a factor of two. 
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Figure 1: The double-gate MOS structure Figure 2: Conduction band edge and first 
considered for the simulations. lateral (mL=O.Slmo) and transversal 

(mt=0.19ma) subband. 
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Figure 3: The Wigner generation rate in the 60 nm 
device for different drain bias. 

Figure 4: The mean particle energy in the 60 nm 
device for different drain bias. 

Figure 5: The carrier concentrations in the 15 nm 
(top) and 15nm (bottom) device at dif- 
ferent drain voltages. 

Figure 6: Output characteristics of the 25 nm d e  
vice using classical, coherent Wigner, 
and non-coherent Wigner Monte Carlo. 
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