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We report on a computational approach based on the self-consistent solution of the 
steady-state Boltzmann transport equation (BTE) coupled with the Poisson equation for the study 
of inhomogeneous transport in semiconductor quantum dots (QDs). The nonlinear, coupled 
Poisson-Boltzmann (PB) system is solved numerically using finite difference methods. 
Preliminary studies of high-field and high-temperature transport characteristics of sample QDs 
show a build-up of strong fields in the QD region, charge redistribution due to the applied and 
built-in field and interesting fine structure in the high-energy tail of the electron distribution 
function in the QD region. 

The BTE is a complicated integro-differential equation for the electron distribution 
function which in principle needs to be solved in seven dimensions, corresponding to time, 
position and momentum space. Most attempts to date to solve the BTE have been primarily 
based on Monte Carlo methods for the solution of the BTE or hydrodynamic device models 
based on moments of the BTE. Recently, however, there have been a few attempts to solve the 
BTE using direct methods. 

In our treatment'we discretize the rescaled BTE in the two-dimensional phase space (one 
dimension corresponding to position and one to velocity), using a first-order upwind method. 
The corresponding system of equations is then solved using a successive overrelaxation method 
(SOR), which updates the solution iteratively in the 2-dimensional phase space until convergence 
is reached. From the calculated electron distribution function, the electron density is calculated 
and used as an input to the Poisson equation which in tum is solved using finite differencing and 
SOR. The calculated inhomogeneous electric field is then finally used as input in the BTE and 
the whole process is repeated until convergence is reached. The boundary conditions for the 
coupled PB system of equations are: i) For the Poisson solver, fixed potential at the boundaries. 
ii) For the BTE solver, displaced Maxwell-Boltzmann distributions, using the calculated value of 
the electric field at the boundaries, in space. 

A sample result of the solution of the PB system of equations, using the relaxation-time 
approximation, is shown in figure I ,  where, the potential energy profile, electric field, electron 
density and electron distribution function at selected points in position are shown for an N%- 
N'N-N' structure, calculated at the temperature T=300 K and applied bias voltage Vb=0.5 V (see 
figure caption for the rest of the parameters used in the calculation). Several immediate 
observations can be made from the presented results: As expected, the potential drop occurs 
mainly over the active portion of the device, giving rise to large and sharp variations in the 
electric field, as seen in Fig. l(a). From the electron density shown in Fig. I(b) it is further seen 
that charge redistribution occurs due to the applied and built-in field, giving rise to an 
accumulation of charge near the injecting contact. Most importantly, the electron distribution 
function [Fig. I(c)], shown for the points in space depicted in Fig. l(a), deviates significantly 
from a drifted-Maxwellian distribution, displaying a complex structure in the high-energy tail of 
the distribution function. These features accentuate the inhomogeneous and non-equilibrium 
nature of the transport through these type of systems. 

A full journal publication of this work will be published in the Journal of Computational Electronics. 
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Fig. 1: (a) Electron potential energy and electric field. The labels xi mark the points in space for 
which the electron distribution functions in Fig. I(c) are plotted. (b) Electron density (solid line) 
and doping density (dashed line, whole range not shown). (c) Normalized electron distribution 
function. The parameters in the calculation are: The doping densities N+=10'3 m", N-=IOl9 nY3, 
the effective mass m*=0.067mo, the scattering time ~ 2 . 5 1 0 . ' ~  s. The central NN'N- region has 
the dimensions 200/200/200 nm, the contact N' regions are 1 pm long. 

A full journal publication of this work will be published in the  Journal of Computational Electronics. 
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