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The general theory for quantum simulation of cubic semiconductor n-MOSFETs is 
developed within the effective mass equation approach. The full three-dimensional transport 
problem is described in terms of coupled transverse subband modes which arise due to quantum 
confinement along the body thickness direction. Couplings among the subbands are generated 
for two reasons: due to spatial variations of the confinement potential along the transport 
direction, and due to non-alignment of the device coordinate system with the principal axes of 
the constant energy conduction band ellipsoids. The problem simplifies considerably if the 
electrostatic potential is separable along transport and confinement directions, and further if the 
potential variations along the transport direction are slow enough to prevent dipolar coupling 
(Zener tunneling) between subbands. In this limit, the transport problem can be solved by 
employing two unitary operators to transform an arbitrarily oriented constant energy ellipsoid 
into a regular ellipsoid with principal axes along the transport, width and confinement directions 
of the device. The effective masses for several technologically important wafer orientations for 
silicon and germanium are calculated in this paper. 

We formulate the generalized effective mass equation by defining three orthogonal 
coordinate systems---device, crystal and ellipsoidal coordinate system-presented in Fig. 1. 
Three unit vectors along X, Y and Z span the first, where Z is along the body thickness (i.e. 
quantum confinement of inversion carriers), X along the source to drain (i.e. transport) direction, 
and Y along the device width direction. The second coordinate system is spanned by three unit 
vectors oriented along the three orthogonal < I  OO> crystallographic directions of the underlying 
channel material. Finally, the basis for the ellipsoidal coordinate system consists of the unit 
vectors chosen along the principal axes of the conduction band constant energy ellipsoid. 

The solution of the generalized effective mass equation for the device becomes nontrivial 
when the principal axes of the ellipsoid do not coincide with, X,  Y and Z. The treatment 
simplifies if the electrostatic potential is separable, valid if the cross-section is unvarying along 
the transport direction. Further simplifications occur for thin body MOSFETs, where the cross- 
terms in the kinetic energy arising due to the arbitrarily oriented conduction band ellipsoids do 
not couple the various subbands. In this limit, two unitary operations, presented in fig. 2, 
transform the arbitrarily oriented ellipsoid (left) into a regular ellipsoid (right). The first 
operation decouples the energy along the 2 axis from the energy associated with the carrier's 
motion in the transport plane. The resultant ellipsoid (middle) becomes symmetric across the X- 
Y plane and, one principal axis of the transformed ellipsoid becomes aligned with 2. In general, 
the other two principal axes are not aligned with X and Y, and the effective mass Hamiltonian 
remains complicated due to the presence of first derivative. The second unitary operation 
transforms it in such a way that the transformed constant energy elliptical contours have their 
principal axis aligned along X and Y (right). Since the first and third ellipsoids are exactly 
equivalent, the well defined effective masses of the latter describes the former. The unitary 
operations conserve the density-of-states (DOS) and group velocity of the carriers. The masses 
for both A and A CB valleys for (001) wafer orientation are presented in Table I, and they can be 
derived for any orientation. The density-of-states effective mass per valley is. 6 
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Figure 1 The device, crystal and ellipsoid coordinate systems. The non-alignment of the third 
with the first complicates the effective mass Hamiltonian, which we solve here with the two 
unitary transformations shown below. 
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Figure 2 Two unitary operations simplify the effective mass Hamiltonian of an arbitrarily 
oriented ellipsoid. The first operator U,. decouples the kinetic energy along the Z axis from the 
energy associated with the carrier's motion in the transport plane. The resultant ellipsoid 
(middle) becomes symmetric across the X-Y plane, and one principal axis of the transformed 
ellipsoid becomes aligned with Z. In general, the other two principal axes are not yet aligned 
with X and Y, and the presence of first derivative causes the effective mass Hamiltonian to 
remain complicated. The second unitary operation, U,, transforms it in such a way that the 
transformed constant energy elliptical contours have their principal axis aligned along X and Y 
(right). These operations subtracts the phase velocity of the states only and the DOS and group 
velocity are conserved. 

Table 1. Transport, width and confinement effective masses and subband degeneracies for A and 
A CB valleys for (001) wafer. They are lowest energy CB valleys in Si and Ge, respectively. The 
theory presented here can be applied to get such results for any wafer orientation 
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